Metamath Proof Explorer


Theorem mendplusg

Description: A specific addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015)

Ref Expression
Hypotheses mendplusgfval.a A = MEndo M
mendplusgfval.b B = Base A
mendplusgfval.p + ˙ = + M
mendplusg.q ˙ = + A
Assertion mendplusg X B Y B X ˙ Y = X + ˙ f Y

Proof

Step Hyp Ref Expression
1 mendplusgfval.a A = MEndo M
2 mendplusgfval.b B = Base A
3 mendplusgfval.p + ˙ = + M
4 mendplusg.q ˙ = + A
5 oveq12 x = X y = Y x + ˙ f y = X + ˙ f Y
6 1 2 3 mendplusgfval + A = x B , y B x + ˙ f y
7 4 6 eqtri ˙ = x B , y B x + ˙ f y
8 ovex X + ˙ f Y V
9 5 7 8 ovmpoa X B Y B X ˙ Y = X + ˙ f Y