Metamath Proof Explorer


Theorem mendplusg

Description: A specific addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015)

Ref Expression
Hypotheses mendplusgfval.a A=MEndoM
mendplusgfval.b B=BaseA
mendplusgfval.p +˙=+M
mendplusg.q ˙=+A
Assertion mendplusg XBYBX˙Y=X+˙fY

Proof

Step Hyp Ref Expression
1 mendplusgfval.a A=MEndoM
2 mendplusgfval.b B=BaseA
3 mendplusgfval.p +˙=+M
4 mendplusg.q ˙=+A
5 oveq12 x=Xy=Yx+˙fy=X+˙fY
6 1 2 3 mendplusgfval +A=xB,yBx+˙fy
7 4 6 eqtri ˙=xB,yBx+˙fy
8 ovex X+˙fYV
9 5 7 8 ovmpoa XBYBX˙Y=X+˙fY