Metamath Proof Explorer


Theorem mendmulrfval

Description: Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015) (Proof shortened by AV, 31-Oct-2024)

Ref Expression
Hypotheses mendmulrfval.a A = MEndo M
mendmulrfval.b B = Base A
Assertion mendmulrfval A = x B , y B x y

Proof

Step Hyp Ref Expression
1 mendmulrfval.a A = MEndo M
2 mendmulrfval.b B = Base A
3 1 mendbas M LMHom M = Base A
4 2 3 eqtr4i B = M LMHom M
5 eqid x B , y B x + M f y = x B , y B x + M f y
6 eqid x B , y B x y = x B , y B x y
7 eqid Scalar M = Scalar M
8 eqid x Base Scalar M , y B Base M × x M f y = x Base Scalar M , y B Base M × x M f y
9 4 5 6 7 8 mendval M V MEndo M = Base ndx B + ndx x B , y B x + M f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y
10 1 9 syl5eq M V A = Base ndx B + ndx x B , y B x + M f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y
11 10 fveq2d M V A = Base ndx B + ndx x B , y B x + M f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y
12 2 fvexi B V
13 12 12 mpoex x B , y B x y V
14 eqid Base ndx B + ndx x B , y B x + M f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y = Base ndx B + ndx x B , y B x + M f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y
15 14 algmulr x B , y B x y V x B , y B x y = Base ndx B + ndx x B , y B x + M f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y
16 13 15 mp1i M V x B , y B x y = Base ndx B + ndx x B , y B x + M f y ndx x B , y B x y Scalar ndx Scalar M ndx x Base Scalar M , y B Base M × x M f y
17 11 16 eqtr4d M V A = x B , y B x y
18 fvprc ¬ M V MEndo M =
19 1 18 syl5eq ¬ M V A =
20 19 fveq2d ¬ M V A =
21 mulrid 𝑟 = Slot ndx
22 21 str0 =
23 20 22 eqtr4di ¬ M V A =
24 19 fveq2d ¬ M V Base A = Base
25 2 24 syl5eq ¬ M V B = Base
26 base0 = Base
27 25 26 eqtr4di ¬ M V B =
28 27 olcd ¬ M V B = B =
29 0mpo0 B = B = x B , y B x y =
30 28 29 syl ¬ M V x B , y B x y =
31 23 30 eqtr4d ¬ M V A = x B , y B x y
32 17 31 pm2.61i A = x B , y B x y