Metamath Proof Explorer


Theorem mendmulr

Description: A specific multiplication in the module endormoprhism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015)

Ref Expression
Hypotheses mendmulrfval.a A = MEndo M
mendmulrfval.b B = Base A
mendmulr.q · ˙ = A
Assertion mendmulr X B Y B X · ˙ Y = X Y

Proof

Step Hyp Ref Expression
1 mendmulrfval.a A = MEndo M
2 mendmulrfval.b B = Base A
3 mendmulr.q · ˙ = A
4 coexg X B Y B X Y V
5 coeq1 x = X x y = X y
6 coeq2 y = Y X y = X Y
7 1 2 mendmulrfval A = x B , y B x y
8 3 7 eqtri · ˙ = x B , y B x y
9 5 6 8 ovmpog X B Y B X Y V X · ˙ Y = X Y
10 4 9 mpd3an3 X B Y B X · ˙ Y = X Y