Metamath Proof Explorer


Theorem mendmulr

Description: A specific multiplication in the module endormoprhism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015)

Ref Expression
Hypotheses mendmulrfval.a 𝐴 = ( MEndo ‘ 𝑀 )
mendmulrfval.b 𝐵 = ( Base ‘ 𝐴 )
mendmulr.q · = ( .r𝐴 )
Assertion mendmulr ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑋𝑌 ) )

Proof

Step Hyp Ref Expression
1 mendmulrfval.a 𝐴 = ( MEndo ‘ 𝑀 )
2 mendmulrfval.b 𝐵 = ( Base ‘ 𝐴 )
3 mendmulr.q · = ( .r𝐴 )
4 coexg ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋𝑌 ) ∈ V )
5 coeq1 ( 𝑥 = 𝑋 → ( 𝑥𝑦 ) = ( 𝑋𝑦 ) )
6 coeq2 ( 𝑦 = 𝑌 → ( 𝑋𝑦 ) = ( 𝑋𝑌 ) )
7 1 2 mendmulrfval ( .r𝐴 ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥𝑦 ) )
8 3 7 eqtri · = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥𝑦 ) )
9 5 6 8 ovmpog ( ( 𝑋𝐵𝑌𝐵 ∧ ( 𝑋𝑌 ) ∈ V ) → ( 𝑋 · 𝑌 ) = ( 𝑋𝑌 ) )
10 4 9 mpd3an3 ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑋𝑌 ) )