| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mendmulrfval.a |
⊢ 𝐴 = ( MEndo ‘ 𝑀 ) |
| 2 |
|
mendmulrfval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
mendmulr.q |
⊢ · = ( .r ‘ 𝐴 ) |
| 4 |
|
coexg |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∘ 𝑌 ) ∈ V ) |
| 5 |
|
coeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∘ 𝑦 ) = ( 𝑋 ∘ 𝑦 ) ) |
| 6 |
|
coeq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ∘ 𝑦 ) = ( 𝑋 ∘ 𝑌 ) ) |
| 7 |
1 2
|
mendmulrfval |
⊢ ( .r ‘ 𝐴 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) |
| 8 |
3 7
|
eqtri |
⊢ · = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) |
| 9 |
5 6 8
|
ovmpog |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∘ 𝑌 ) ∈ V ) → ( 𝑋 · 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) |
| 10 |
4 9
|
mpd3an3 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) |