| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mendsca.a |
⊢ 𝐴 = ( MEndo ‘ 𝑀 ) |
| 2 |
|
mendsca.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
| 3 |
|
fvex |
⊢ ( Scalar ‘ 𝑀 ) ∈ V |
| 4 |
|
eqid |
⊢ ( { 〈 ( Base ‘ ndx ) , ( 𝑀 LMHom 𝑀 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , ( 𝑀 LMHom 𝑀 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) 〉 } ) |
| 5 |
4
|
algsca |
⊢ ( ( Scalar ‘ 𝑀 ) ∈ V → ( Scalar ‘ 𝑀 ) = ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) , ( 𝑀 LMHom 𝑀 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) ) |
| 6 |
3 5
|
mp1i |
⊢ ( 𝑀 ∈ V → ( Scalar ‘ 𝑀 ) = ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) , ( 𝑀 LMHom 𝑀 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) ) |
| 7 |
|
eqid |
⊢ ( 𝑀 LMHom 𝑀 ) = ( 𝑀 LMHom 𝑀 ) |
| 8 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘ 𝑦 ) ) |
| 10 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
| 11 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
| 12 |
7 8 9 10 11
|
mendval |
⊢ ( 𝑀 ∈ V → ( MEndo ‘ 𝑀 ) = ( { 〈 ( Base ‘ ndx ) , ( 𝑀 LMHom 𝑀 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝑀 ∈ V → ( Scalar ‘ ( MEndo ‘ 𝑀 ) ) = ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) , ( 𝑀 LMHom 𝑀 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) ) |
| 14 |
6 13
|
eqtr4d |
⊢ ( 𝑀 ∈ V → ( Scalar ‘ 𝑀 ) = ( Scalar ‘ ( MEndo ‘ 𝑀 ) ) ) |
| 15 |
|
scaid |
⊢ Scalar = Slot ( Scalar ‘ ndx ) |
| 16 |
15
|
str0 |
⊢ ∅ = ( Scalar ‘ ∅ ) |
| 17 |
16
|
eqcomi |
⊢ ( Scalar ‘ ∅ ) = ∅ |
| 18 |
|
eqid |
⊢ ( MEndo ‘ 𝑀 ) = ( MEndo ‘ 𝑀 ) |
| 19 |
17 18
|
fveqprc |
⊢ ( ¬ 𝑀 ∈ V → ( Scalar ‘ 𝑀 ) = ( Scalar ‘ ( MEndo ‘ 𝑀 ) ) ) |
| 20 |
14 19
|
pm2.61i |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ ( MEndo ‘ 𝑀 ) ) |
| 21 |
1
|
fveq2i |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ ( MEndo ‘ 𝑀 ) ) |
| 22 |
20 2 21
|
3eqtr4i |
⊢ 𝑆 = ( Scalar ‘ 𝐴 ) |