| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mendsca.a |
|- A = ( MEndo ` M ) |
| 2 |
|
mendsca.s |
|- S = ( Scalar ` M ) |
| 3 |
|
fvex |
|- ( Scalar ` M ) e. _V |
| 4 |
|
eqid |
|- ( { <. ( Base ` ndx ) , ( M LMHom M ) >. , <. ( +g ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) = ( { <. ( Base ` ndx ) , ( M LMHom M ) >. , <. ( +g ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) |
| 5 |
4
|
algsca |
|- ( ( Scalar ` M ) e. _V -> ( Scalar ` M ) = ( Scalar ` ( { <. ( Base ` ndx ) , ( M LMHom M ) >. , <. ( +g ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) ) |
| 6 |
3 5
|
mp1i |
|- ( M e. _V -> ( Scalar ` M ) = ( Scalar ` ( { <. ( Base ` ndx ) , ( M LMHom M ) >. , <. ( +g ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) ) |
| 7 |
|
eqid |
|- ( M LMHom M ) = ( M LMHom M ) |
| 8 |
|
eqid |
|- ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) = ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) |
| 9 |
|
eqid |
|- ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) = ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) |
| 10 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
| 11 |
|
eqid |
|- ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) = ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) |
| 12 |
7 8 9 10 11
|
mendval |
|- ( M e. _V -> ( MEndo ` M ) = ( { <. ( Base ` ndx ) , ( M LMHom M ) >. , <. ( +g ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) |
| 13 |
12
|
fveq2d |
|- ( M e. _V -> ( Scalar ` ( MEndo ` M ) ) = ( Scalar ` ( { <. ( Base ` ndx ) , ( M LMHom M ) >. , <. ( +g ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. ( M LMHom M ) , y e. ( M LMHom M ) |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` M ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` M ) ) , y e. ( M LMHom M ) |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) >. } ) ) ) |
| 14 |
6 13
|
eqtr4d |
|- ( M e. _V -> ( Scalar ` M ) = ( Scalar ` ( MEndo ` M ) ) ) |
| 15 |
|
scaid |
|- Scalar = Slot ( Scalar ` ndx ) |
| 16 |
15
|
str0 |
|- (/) = ( Scalar ` (/) ) |
| 17 |
16
|
eqcomi |
|- ( Scalar ` (/) ) = (/) |
| 18 |
|
eqid |
|- ( MEndo ` M ) = ( MEndo ` M ) |
| 19 |
17 18
|
fveqprc |
|- ( -. M e. _V -> ( Scalar ` M ) = ( Scalar ` ( MEndo ` M ) ) ) |
| 20 |
14 19
|
pm2.61i |
|- ( Scalar ` M ) = ( Scalar ` ( MEndo ` M ) ) |
| 21 |
1
|
fveq2i |
|- ( Scalar ` A ) = ( Scalar ` ( MEndo ` M ) ) |
| 22 |
20 2 21
|
3eqtr4i |
|- S = ( Scalar ` A ) |