Step |
Hyp |
Ref |
Expression |
1 |
|
mendvscafval.a |
|- A = ( MEndo ` M ) |
2 |
|
mendvscafval.v |
|- .x. = ( .s ` M ) |
3 |
|
mendvscafval.b |
|- B = ( Base ` A ) |
4 |
|
mendvscafval.s |
|- S = ( Scalar ` M ) |
5 |
|
mendvscafval.k |
|- K = ( Base ` S ) |
6 |
|
mendvscafval.e |
|- E = ( Base ` M ) |
7 |
1
|
fveq2i |
|- ( .s ` A ) = ( .s ` ( MEndo ` M ) ) |
8 |
1
|
mendbas |
|- ( M LMHom M ) = ( Base ` A ) |
9 |
3 8
|
eqtr4i |
|- B = ( M LMHom M ) |
10 |
|
eqid |
|- ( x e. B , y e. B |-> ( x oF ( +g ` M ) y ) ) = ( x e. B , y e. B |-> ( x oF ( +g ` M ) y ) ) |
11 |
|
eqid |
|- ( x e. B , y e. B |-> ( x o. y ) ) = ( x e. B , y e. B |-> ( x o. y ) ) |
12 |
|
eqid |
|- B = B |
13 |
6
|
xpeq1i |
|- ( E X. { x } ) = ( ( Base ` M ) X. { x } ) |
14 |
|
eqid |
|- y = y |
15 |
|
ofeq |
|- ( .x. = ( .s ` M ) -> oF .x. = oF ( .s ` M ) ) |
16 |
2 15
|
ax-mp |
|- oF .x. = oF ( .s ` M ) |
17 |
13 14 16
|
oveq123i |
|- ( ( E X. { x } ) oF .x. y ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) |
18 |
5 12 17
|
mpoeq123i |
|- ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) = ( x e. ( Base ` S ) , y e. B |-> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) |
19 |
9 10 11 4 18
|
mendval |
|- ( M e. _V -> ( MEndo ` M ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( x e. B , y e. B |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) >. } ) ) |
20 |
19
|
fveq2d |
|- ( M e. _V -> ( .s ` ( MEndo ` M ) ) = ( .s ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( x e. B , y e. B |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) >. } ) ) ) |
21 |
5
|
fvexi |
|- K e. _V |
22 |
3
|
fvexi |
|- B e. _V |
23 |
21 22
|
mpoex |
|- ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) e. _V |
24 |
|
eqid |
|- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( x e. B , y e. B |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( x e. B , y e. B |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) >. } ) |
25 |
24
|
algvsca |
|- ( ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) e. _V -> ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) = ( .s ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( x e. B , y e. B |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) >. } ) ) ) |
26 |
23 25
|
mp1i |
|- ( M e. _V -> ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) = ( .s ` ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( x e. B , y e. B |-> ( x oF ( +g ` M ) y ) ) >. , <. ( .r ` ndx ) , ( x e. B , y e. B |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) >. } ) ) ) |
27 |
20 26
|
eqtr4d |
|- ( M e. _V -> ( .s ` ( MEndo ` M ) ) = ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) ) |
28 |
|
fvprc |
|- ( -. M e. _V -> ( MEndo ` M ) = (/) ) |
29 |
28
|
fveq2d |
|- ( -. M e. _V -> ( .s ` ( MEndo ` M ) ) = ( .s ` (/) ) ) |
30 |
|
df-vsca |
|- .s = Slot 6 |
31 |
30
|
str0 |
|- (/) = ( .s ` (/) ) |
32 |
29 31
|
eqtr4di |
|- ( -. M e. _V -> ( .s ` ( MEndo ` M ) ) = (/) ) |
33 |
|
fvprc |
|- ( -. M e. _V -> ( Scalar ` M ) = (/) ) |
34 |
4 33
|
syl5eq |
|- ( -. M e. _V -> S = (/) ) |
35 |
34
|
fveq2d |
|- ( -. M e. _V -> ( Base ` S ) = ( Base ` (/) ) ) |
36 |
|
base0 |
|- (/) = ( Base ` (/) ) |
37 |
35 5 36
|
3eqtr4g |
|- ( -. M e. _V -> K = (/) ) |
38 |
37
|
orcd |
|- ( -. M e. _V -> ( K = (/) \/ B = (/) ) ) |
39 |
|
0mpo0 |
|- ( ( K = (/) \/ B = (/) ) -> ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) = (/) ) |
40 |
38 39
|
syl |
|- ( -. M e. _V -> ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) = (/) ) |
41 |
32 40
|
eqtr4d |
|- ( -. M e. _V -> ( .s ` ( MEndo ` M ) ) = ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) ) |
42 |
27 41
|
pm2.61i |
|- ( .s ` ( MEndo ` M ) ) = ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) |
43 |
7 42
|
eqtri |
|- ( .s ` A ) = ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) |