Metamath Proof Explorer


Theorem mendvsca

Description: A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015)

Ref Expression
Hypotheses mendvscafval.a
|- A = ( MEndo ` M )
mendvscafval.v
|- .x. = ( .s ` M )
mendvscafval.b
|- B = ( Base ` A )
mendvscafval.s
|- S = ( Scalar ` M )
mendvscafval.k
|- K = ( Base ` S )
mendvscafval.e
|- E = ( Base ` M )
mendvsca.w
|- .xb = ( .s ` A )
Assertion mendvsca
|- ( ( X e. K /\ Y e. B ) -> ( X .xb Y ) = ( ( E X. { X } ) oF .x. Y ) )

Proof

Step Hyp Ref Expression
1 mendvscafval.a
 |-  A = ( MEndo ` M )
2 mendvscafval.v
 |-  .x. = ( .s ` M )
3 mendvscafval.b
 |-  B = ( Base ` A )
4 mendvscafval.s
 |-  S = ( Scalar ` M )
5 mendvscafval.k
 |-  K = ( Base ` S )
6 mendvscafval.e
 |-  E = ( Base ` M )
7 mendvsca.w
 |-  .xb = ( .s ` A )
8 sneq
 |-  ( x = X -> { x } = { X } )
9 8 xpeq2d
 |-  ( x = X -> ( E X. { x } ) = ( E X. { X } ) )
10 id
 |-  ( y = Y -> y = Y )
11 9 10 oveqan12d
 |-  ( ( x = X /\ y = Y ) -> ( ( E X. { x } ) oF .x. y ) = ( ( E X. { X } ) oF .x. Y ) )
12 1 2 3 4 5 6 mendvscafval
 |-  ( .s ` A ) = ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) )
13 7 12 eqtri
 |-  .xb = ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) )
14 ovex
 |-  ( ( E X. { X } ) oF .x. Y ) e. _V
15 11 13 14 ovmpoa
 |-  ( ( X e. K /\ Y e. B ) -> ( X .xb Y ) = ( ( E X. { X } ) oF .x. Y ) )