Step |
Hyp |
Ref |
Expression |
1 |
|
mendvscafval.a |
|- A = ( MEndo ` M ) |
2 |
|
mendvscafval.v |
|- .x. = ( .s ` M ) |
3 |
|
mendvscafval.b |
|- B = ( Base ` A ) |
4 |
|
mendvscafval.s |
|- S = ( Scalar ` M ) |
5 |
|
mendvscafval.k |
|- K = ( Base ` S ) |
6 |
|
mendvscafval.e |
|- E = ( Base ` M ) |
7 |
|
mendvsca.w |
|- .xb = ( .s ` A ) |
8 |
|
sneq |
|- ( x = X -> { x } = { X } ) |
9 |
8
|
xpeq2d |
|- ( x = X -> ( E X. { x } ) = ( E X. { X } ) ) |
10 |
|
id |
|- ( y = Y -> y = Y ) |
11 |
9 10
|
oveqan12d |
|- ( ( x = X /\ y = Y ) -> ( ( E X. { x } ) oF .x. y ) = ( ( E X. { X } ) oF .x. Y ) ) |
12 |
1 2 3 4 5 6
|
mendvscafval |
|- ( .s ` A ) = ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) |
13 |
7 12
|
eqtri |
|- .xb = ( x e. K , y e. B |-> ( ( E X. { x } ) oF .x. y ) ) |
14 |
|
ovex |
|- ( ( E X. { X } ) oF .x. Y ) e. _V |
15 |
11 13 14
|
ovmpoa |
|- ( ( X e. K /\ Y e. B ) -> ( X .xb Y ) = ( ( E X. { X } ) oF .x. Y ) ) |