Step |
Hyp |
Ref |
Expression |
1 |
|
mendvscafval.a |
⊢ 𝐴 = ( MEndo ‘ 𝑀 ) |
2 |
|
mendvscafval.v |
⊢ · = ( ·𝑠 ‘ 𝑀 ) |
3 |
|
mendvscafval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
mendvscafval.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
5 |
|
mendvscafval.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
6 |
|
mendvscafval.e |
⊢ 𝐸 = ( Base ‘ 𝑀 ) |
7 |
|
mendvsca.w |
⊢ ∙ = ( ·𝑠 ‘ 𝐴 ) |
8 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
9 |
8
|
xpeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐸 × { 𝑥 } ) = ( 𝐸 × { 𝑋 } ) ) |
10 |
|
id |
⊢ ( 𝑦 = 𝑌 → 𝑦 = 𝑌 ) |
11 |
9 10
|
oveqan12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( 𝐸 × { 𝑥 } ) ∘f · 𝑦 ) = ( ( 𝐸 × { 𝑋 } ) ∘f · 𝑌 ) ) |
12 |
1 2 3 4 5 6
|
mendvscafval |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( ( 𝐸 × { 𝑥 } ) ∘f · 𝑦 ) ) |
13 |
7 12
|
eqtri |
⊢ ∙ = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( ( 𝐸 × { 𝑥 } ) ∘f · 𝑦 ) ) |
14 |
|
ovex |
⊢ ( ( 𝐸 × { 𝑋 } ) ∘f · 𝑌 ) ∈ V |
15 |
11 13 14
|
ovmpoa |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∙ 𝑌 ) = ( ( 𝐸 × { 𝑋 } ) ∘f · 𝑌 ) ) |