Metamath Proof Explorer


Theorem mendvsca

Description: A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015)

Ref Expression
Hypotheses mendvscafval.a 𝐴 = ( MEndo ‘ 𝑀 )
mendvscafval.v · = ( ·𝑠𝑀 )
mendvscafval.b 𝐵 = ( Base ‘ 𝐴 )
mendvscafval.s 𝑆 = ( Scalar ‘ 𝑀 )
mendvscafval.k 𝐾 = ( Base ‘ 𝑆 )
mendvscafval.e 𝐸 = ( Base ‘ 𝑀 )
mendvsca.w = ( ·𝑠𝐴 )
Assertion mendvsca ( ( 𝑋𝐾𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( ( 𝐸 × { 𝑋 } ) ∘f · 𝑌 ) )

Proof

Step Hyp Ref Expression
1 mendvscafval.a 𝐴 = ( MEndo ‘ 𝑀 )
2 mendvscafval.v · = ( ·𝑠𝑀 )
3 mendvscafval.b 𝐵 = ( Base ‘ 𝐴 )
4 mendvscafval.s 𝑆 = ( Scalar ‘ 𝑀 )
5 mendvscafval.k 𝐾 = ( Base ‘ 𝑆 )
6 mendvscafval.e 𝐸 = ( Base ‘ 𝑀 )
7 mendvsca.w = ( ·𝑠𝐴 )
8 sneq ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } )
9 8 xpeq2d ( 𝑥 = 𝑋 → ( 𝐸 × { 𝑥 } ) = ( 𝐸 × { 𝑋 } ) )
10 id ( 𝑦 = 𝑌𝑦 = 𝑌 )
11 9 10 oveqan12d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( 𝐸 × { 𝑥 } ) ∘f · 𝑦 ) = ( ( 𝐸 × { 𝑋 } ) ∘f · 𝑌 ) )
12 1 2 3 4 5 6 mendvscafval ( ·𝑠𝐴 ) = ( 𝑥𝐾 , 𝑦𝐵 ↦ ( ( 𝐸 × { 𝑥 } ) ∘f · 𝑦 ) )
13 7 12 eqtri = ( 𝑥𝐾 , 𝑦𝐵 ↦ ( ( 𝐸 × { 𝑥 } ) ∘f · 𝑦 ) )
14 ovex ( ( 𝐸 × { 𝑋 } ) ∘f · 𝑌 ) ∈ V
15 11 13 14 ovmpoa ( ( 𝑋𝐾𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( ( 𝐸 × { 𝑋 } ) ∘f · 𝑌 ) )