Step |
Hyp |
Ref |
Expression |
1 |
|
mendassa.a |
⊢ 𝐴 = ( MEndo ‘ 𝑀 ) |
2 |
1
|
mendbas |
⊢ ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 ) |
3 |
2
|
a1i |
⊢ ( 𝑀 ∈ LMod → ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 ) ) |
4 |
|
eqidd |
⊢ ( 𝑀 ∈ LMod → ( +g ‘ 𝐴 ) = ( +g ‘ 𝐴 ) ) |
5 |
|
eqidd |
⊢ ( 𝑀 ∈ LMod → ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝐴 ) = ( +g ‘ 𝐴 ) |
8 |
1 2 6 7
|
mendplusg |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) |
9 |
6
|
lmhmplusg |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
10 |
8 9
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
11 |
10
|
3adant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
12 |
|
simpr1 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) |
13 |
|
simpr2 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) |
14 |
12 13 9
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
15 |
|
simpr3 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) |
16 |
1 2 6 7
|
mendplusg |
⊢ ( ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) |
17 |
14 15 16
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) |
18 |
12 13 8
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) |
19 |
18
|
oveq1d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝐴 ) 𝑧 ) ) |
20 |
6
|
lmhmplusg |
⊢ ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
21 |
13 15 20
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
22 |
1 2 6 7
|
mendplusg |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝐴 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝑥 ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
23 |
12 21 22
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝐴 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝑥 ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
24 |
1 2 6 7
|
mendplusg |
⊢ ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) |
25 |
13 15 24
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) |
26 |
25
|
oveq2d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝐴 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) = ( 𝑥 ( +g ‘ 𝐴 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
27 |
|
lmodgrp |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Grp ) |
28 |
27
|
grpmndd |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Mnd ) |
29 |
28
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑀 ∈ Mnd ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
31 |
30 30
|
lmhmf |
⊢ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
32 |
12 31
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
33 |
|
fvex |
⊢ ( Base ‘ 𝑀 ) ∈ V |
34 |
33 33
|
elmap |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ↔ 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
35 |
32 34
|
sylibr |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) |
36 |
30 30
|
lmhmf |
⊢ ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
37 |
13 36
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
38 |
33 33
|
elmap |
⊢ ( 𝑦 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ↔ 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
39 |
37 38
|
sylibr |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) |
40 |
30 30
|
lmhmf |
⊢ ( 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
41 |
15 40
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
42 |
33 33
|
elmap |
⊢ ( 𝑧 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ↔ 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
43 |
41 42
|
sylibr |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) |
44 |
30 6
|
mndvass |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑥 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
45 |
29 35 39 43 44
|
syl13anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
46 |
23 26 45
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝐴 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) |
47 |
17 19 46
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐴 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) ) |
48 |
|
id |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ LMod ) |
49 |
|
eqidd |
⊢ ( 𝑀 ∈ LMod → ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) ) |
50 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
51 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
52 |
50 30 51 51
|
0lmhm |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) ) → ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
53 |
48 48 49 52
|
syl3anc |
⊢ ( 𝑀 ∈ LMod → ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
54 |
1 2 6 7
|
mendplusg |
⊢ ( ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ( +g ‘ 𝐴 ) 𝑥 ) = ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) ) |
55 |
53 54
|
sylan |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ( +g ‘ 𝐴 ) 𝑥 ) = ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) ) |
56 |
31 34
|
sylibr |
⊢ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑥 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) |
57 |
30 6 50
|
mndvlid |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) = 𝑥 ) |
58 |
28 56 57
|
syl2an |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) = 𝑥 ) |
59 |
55 58
|
eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ( +g ‘ 𝐴 ) 𝑥 ) = 𝑥 ) |
60 |
|
eqid |
⊢ ( invg ‘ 𝑀 ) = ( invg ‘ 𝑀 ) |
61 |
60
|
invlmhm |
⊢ ( 𝑀 ∈ LMod → ( invg ‘ 𝑀 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
62 |
|
lmhmco |
⊢ ( ( ( invg ‘ 𝑀 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
63 |
61 62
|
sylan |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
64 |
1 2 6 7
|
mendplusg |
⊢ ( ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ( +g ‘ 𝐴 ) 𝑥 ) = ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) ) |
65 |
63 64
|
sylancom |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ( +g ‘ 𝐴 ) 𝑥 ) = ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) ) |
66 |
30 6 60 50
|
grpvlinv |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑥 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) → ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) = ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ) |
67 |
27 56 66
|
syl2an |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) = ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ) |
68 |
65 67
|
eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ( +g ‘ 𝐴 ) 𝑥 ) = ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ) |
69 |
3 4 11 47 53 59 63 68
|
isgrpd |
⊢ ( 𝑀 ∈ LMod → 𝐴 ∈ Grp ) |
70 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
71 |
1 2 70
|
mendmulr |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
72 |
|
lmhmco |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ∘ 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
73 |
71 72
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
74 |
73
|
3adant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
75 |
|
coass |
⊢ ( ( 𝑥 ∘ 𝑦 ) ∘ 𝑧 ) = ( 𝑥 ∘ ( 𝑦 ∘ 𝑧 ) ) |
76 |
12 13 71
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
77 |
76
|
oveq1d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘ 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) ) |
78 |
12 13 72
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ∘ 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
79 |
1 2 70
|
mendmulr |
⊢ ( ( ( 𝑥 ∘ 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ∘ 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘ 𝑦 ) ∘ 𝑧 ) ) |
80 |
78 15 79
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘ 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘ 𝑦 ) ∘ 𝑧 ) ) |
81 |
77 80
|
eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘ 𝑦 ) ∘ 𝑧 ) ) |
82 |
1 2 70
|
mendmulr |
⊢ ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
83 |
13 15 82
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
84 |
83
|
oveq2d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ∘ 𝑧 ) ) ) |
85 |
|
lmhmco |
⊢ ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
86 |
13 15 85
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
87 |
1 2 70
|
mendmulr |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑦 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ∘ 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘ 𝑧 ) ) ) |
88 |
12 86 87
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ∘ 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘ 𝑧 ) ) ) |
89 |
84 88
|
eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘ 𝑧 ) ) ) |
90 |
75 81 89
|
3eqtr4a |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) ) |
91 |
1 2 70
|
mendmulr |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
92 |
12 21 91
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
93 |
25
|
oveq2d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
94 |
|
lmhmco |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
95 |
12 15 94
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
96 |
1 2 6 7
|
mendplusg |
⊢ ( ( ( 𝑥 ∘ 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑥 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ∘ 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ∘ 𝑧 ) ) = ( ( 𝑥 ∘ 𝑦 ) ∘f ( +g ‘ 𝑀 ) ( 𝑥 ∘ 𝑧 ) ) ) |
97 |
78 95 96
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘ 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ∘ 𝑧 ) ) = ( ( 𝑥 ∘ 𝑦 ) ∘f ( +g ‘ 𝑀 ) ( 𝑥 ∘ 𝑧 ) ) ) |
98 |
1 2 70
|
mendmulr |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑥 ∘ 𝑧 ) ) |
99 |
12 15 98
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑥 ∘ 𝑧 ) ) |
100 |
76 99
|
oveq12d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ∘ 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ∘ 𝑧 ) ) ) |
101 |
|
lmghm |
⊢ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑥 ∈ ( 𝑀 GrpHom 𝑀 ) ) |
102 |
|
ghmmhm |
⊢ ( 𝑥 ∈ ( 𝑀 GrpHom 𝑀 ) → 𝑥 ∈ ( 𝑀 MndHom 𝑀 ) ) |
103 |
12 101 102
|
3syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 ∈ ( 𝑀 MndHom 𝑀 ) ) |
104 |
30 6 6
|
mhmvlin |
⊢ ( ( 𝑥 ∈ ( 𝑀 MndHom 𝑀 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ∘ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝑥 ∘ 𝑦 ) ∘f ( +g ‘ 𝑀 ) ( 𝑥 ∘ 𝑧 ) ) ) |
105 |
103 39 43 104
|
syl3anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ∘ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝑥 ∘ 𝑦 ) ∘f ( +g ‘ 𝑀 ) ( 𝑥 ∘ 𝑧 ) ) ) |
106 |
97 100 105
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
107 |
92 93 106
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) ) ) |
108 |
1 2 70
|
mendmulr |
⊢ ( ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘ 𝑧 ) ) |
109 |
14 15 108
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘ 𝑧 ) ) |
110 |
18
|
oveq1d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) ) |
111 |
1 2 6 7
|
mendplusg |
⊢ ( ( ( 𝑥 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑦 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ∘ 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ∘ 𝑧 ) ) = ( ( 𝑥 ∘ 𝑧 ) ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘ 𝑧 ) ) ) |
112 |
95 86 111
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘ 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ∘ 𝑧 ) ) = ( ( 𝑥 ∘ 𝑧 ) ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘ 𝑧 ) ) ) |
113 |
99 83
|
oveq12d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ∘ 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ∘ 𝑧 ) ) ) |
114 |
|
ffn |
⊢ ( 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) → 𝑥 Fn ( Base ‘ 𝑀 ) ) |
115 |
12 31 114
|
3syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 Fn ( Base ‘ 𝑀 ) ) |
116 |
|
ffn |
⊢ ( 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) → 𝑦 Fn ( Base ‘ 𝑀 ) ) |
117 |
13 36 116
|
3syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 Fn ( Base ‘ 𝑀 ) ) |
118 |
33
|
a1i |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( Base ‘ 𝑀 ) ∈ V ) |
119 |
|
inidm |
⊢ ( ( Base ‘ 𝑀 ) ∩ ( Base ‘ 𝑀 ) ) = ( Base ‘ 𝑀 ) |
120 |
115 117 41 118 118 118 119
|
ofco |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘ 𝑧 ) = ( ( 𝑥 ∘ 𝑧 ) ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘ 𝑧 ) ) ) |
121 |
112 113 120
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘ 𝑧 ) ) |
122 |
109 110 121
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) ) |
123 |
30
|
idlmhm |
⊢ ( 𝑀 ∈ LMod → ( I ↾ ( Base ‘ 𝑀 ) ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
124 |
1 2 70
|
mendmulr |
⊢ ( ( ( I ↾ ( Base ‘ 𝑀 ) ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( I ↾ ( Base ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = ( ( I ↾ ( Base ‘ 𝑀 ) ) ∘ 𝑥 ) ) |
125 |
123 124
|
sylan |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( I ↾ ( Base ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = ( ( I ↾ ( Base ‘ 𝑀 ) ) ∘ 𝑥 ) ) |
126 |
31
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
127 |
|
fcoi2 |
⊢ ( 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) → ( ( I ↾ ( Base ‘ 𝑀 ) ) ∘ 𝑥 ) = 𝑥 ) |
128 |
126 127
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( I ↾ ( Base ‘ 𝑀 ) ) ∘ 𝑥 ) = 𝑥 ) |
129 |
125 128
|
eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( I ↾ ( Base ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = 𝑥 ) |
130 |
|
id |
⊢ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) |
131 |
1 2 70
|
mendmulr |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( I ↾ ( Base ‘ 𝑀 ) ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( I ↾ ( Base ‘ 𝑀 ) ) ) = ( 𝑥 ∘ ( I ↾ ( Base ‘ 𝑀 ) ) ) ) |
132 |
130 123 131
|
syl2anr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( I ↾ ( Base ‘ 𝑀 ) ) ) = ( 𝑥 ∘ ( I ↾ ( Base ‘ 𝑀 ) ) ) ) |
133 |
|
fcoi1 |
⊢ ( 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) → ( 𝑥 ∘ ( I ↾ ( Base ‘ 𝑀 ) ) ) = 𝑥 ) |
134 |
126 133
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ∘ ( I ↾ ( Base ‘ 𝑀 ) ) ) = 𝑥 ) |
135 |
132 134
|
eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( I ↾ ( Base ‘ 𝑀 ) ) ) = 𝑥 ) |
136 |
3 4 5 69 74 90 107 122 123 129 135
|
isringd |
⊢ ( 𝑀 ∈ LMod → 𝐴 ∈ Ring ) |