| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mendassa.a |
⊢ 𝐴 = ( MEndo ‘ 𝑀 ) |
| 2 |
1
|
mendbas |
⊢ ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 ) |
| 3 |
2
|
a1i |
⊢ ( 𝑀 ∈ LMod → ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 ) ) |
| 4 |
|
eqidd |
⊢ ( 𝑀 ∈ LMod → ( +g ‘ 𝐴 ) = ( +g ‘ 𝐴 ) ) |
| 5 |
|
eqidd |
⊢ ( 𝑀 ∈ LMod → ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) ) |
| 6 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 7 |
|
eqid |
⊢ ( +g ‘ 𝐴 ) = ( +g ‘ 𝐴 ) |
| 8 |
1 2 6 7
|
mendplusg |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 9 |
6
|
lmhmplusg |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 10 |
8 9
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 11 |
10
|
3adant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 12 |
|
simpr1 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 13 |
|
simpr2 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 14 |
12 13 9
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 15 |
|
simpr3 |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 16 |
1 2 6 7
|
mendplusg |
⊢ ( ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 17 |
14 15 16
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 18 |
12 13 8
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 19 |
18
|
oveq1d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝐴 ) 𝑧 ) ) |
| 20 |
6
|
lmhmplusg |
⊢ ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 21 |
13 15 20
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 22 |
1 2 6 7
|
mendplusg |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝐴 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝑥 ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 23 |
12 21 22
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝐴 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝑥 ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 24 |
1 2 6 7
|
mendplusg |
⊢ ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 25 |
13 15 24
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 26 |
25
|
oveq2d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝐴 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) = ( 𝑥 ( +g ‘ 𝐴 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 27 |
|
lmodgrp |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Grp ) |
| 28 |
27
|
grpmndd |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Mnd ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑀 ∈ Mnd ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 31 |
30 30
|
lmhmf |
⊢ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 32 |
12 31
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 33 |
|
fvex |
⊢ ( Base ‘ 𝑀 ) ∈ V |
| 34 |
33 33
|
elmap |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ↔ 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 35 |
32 34
|
sylibr |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) |
| 36 |
30 30
|
lmhmf |
⊢ ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 37 |
13 36
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 38 |
33 33
|
elmap |
⊢ ( 𝑦 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ↔ 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 39 |
37 38
|
sylibr |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) |
| 40 |
30 30
|
lmhmf |
⊢ ( 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 41 |
15 40
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 42 |
33 33
|
elmap |
⊢ ( 𝑧 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ↔ 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 43 |
41 42
|
sylibr |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) |
| 44 |
30 6
|
mndvass |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑥 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 45 |
29 35 39 43 44
|
syl13anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 46 |
23 26 45
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝐴 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 47 |
17 19 46
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐴 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) ) |
| 48 |
|
id |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ LMod ) |
| 49 |
|
eqidd |
⊢ ( 𝑀 ∈ LMod → ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) ) |
| 50 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
| 51 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
| 52 |
50 30 51 51
|
0lmhm |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑀 ∈ LMod ∧ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) ) → ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 53 |
48 48 49 52
|
syl3anc |
⊢ ( 𝑀 ∈ LMod → ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 54 |
1 2 6 7
|
mendplusg |
⊢ ( ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ( +g ‘ 𝐴 ) 𝑥 ) = ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 55 |
53 54
|
sylan |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ( +g ‘ 𝐴 ) 𝑥 ) = ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 56 |
31 34
|
sylibr |
⊢ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑥 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) |
| 57 |
30 6 50
|
mndvlid |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) = 𝑥 ) |
| 58 |
28 56 57
|
syl2an |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) = 𝑥 ) |
| 59 |
55 58
|
eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ( +g ‘ 𝐴 ) 𝑥 ) = 𝑥 ) |
| 60 |
|
eqid |
⊢ ( invg ‘ 𝑀 ) = ( invg ‘ 𝑀 ) |
| 61 |
60
|
invlmhm |
⊢ ( 𝑀 ∈ LMod → ( invg ‘ 𝑀 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 62 |
|
lmhmco |
⊢ ( ( ( invg ‘ 𝑀 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 63 |
61 62
|
sylan |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 64 |
1 2 6 7
|
mendplusg |
⊢ ( ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ( +g ‘ 𝐴 ) 𝑥 ) = ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 65 |
63 64
|
sylancom |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ( +g ‘ 𝐴 ) 𝑥 ) = ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 66 |
30 6 60 50
|
grpvlinv |
⊢ ( ( 𝑀 ∈ Grp ∧ 𝑥 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) → ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) = ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ) |
| 67 |
27 56 66
|
syl2an |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ∘f ( +g ‘ 𝑀 ) 𝑥 ) = ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ) |
| 68 |
65 67
|
eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( invg ‘ 𝑀 ) ∘ 𝑥 ) ( +g ‘ 𝐴 ) 𝑥 ) = ( ( Base ‘ 𝑀 ) × { ( 0g ‘ 𝑀 ) } ) ) |
| 69 |
3 4 11 47 53 59 63 68
|
isgrpd |
⊢ ( 𝑀 ∈ LMod → 𝐴 ∈ Grp ) |
| 70 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
| 71 |
1 2 70
|
mendmulr |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 72 |
|
lmhmco |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ∘ 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 73 |
71 72
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 74 |
73
|
3adant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 75 |
|
coass |
⊢ ( ( 𝑥 ∘ 𝑦 ) ∘ 𝑧 ) = ( 𝑥 ∘ ( 𝑦 ∘ 𝑧 ) ) |
| 76 |
12 13 71
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 77 |
76
|
oveq1d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘ 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) ) |
| 78 |
12 13 72
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ∘ 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 79 |
1 2 70
|
mendmulr |
⊢ ( ( ( 𝑥 ∘ 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ∘ 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘ 𝑦 ) ∘ 𝑧 ) ) |
| 80 |
78 15 79
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘ 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘ 𝑦 ) ∘ 𝑧 ) ) |
| 81 |
77 80
|
eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘ 𝑦 ) ∘ 𝑧 ) ) |
| 82 |
1 2 70
|
mendmulr |
⊢ ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
| 83 |
13 15 82
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
| 84 |
83
|
oveq2d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ∘ 𝑧 ) ) ) |
| 85 |
|
lmhmco |
⊢ ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 86 |
13 15 85
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 87 |
1 2 70
|
mendmulr |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑦 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ∘ 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘ 𝑧 ) ) ) |
| 88 |
12 86 87
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ∘ 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘ 𝑧 ) ) ) |
| 89 |
84 88
|
eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘ 𝑧 ) ) ) |
| 90 |
75 81 89
|
3eqtr4a |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) ) |
| 91 |
1 2 70
|
mendmulr |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 92 |
12 21 91
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 93 |
25
|
oveq2d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 94 |
|
lmhmco |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 95 |
12 15 94
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 96 |
1 2 6 7
|
mendplusg |
⊢ ( ( ( 𝑥 ∘ 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑥 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ∘ 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ∘ 𝑧 ) ) = ( ( 𝑥 ∘ 𝑦 ) ∘f ( +g ‘ 𝑀 ) ( 𝑥 ∘ 𝑧 ) ) ) |
| 97 |
78 95 96
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘ 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ∘ 𝑧 ) ) = ( ( 𝑥 ∘ 𝑦 ) ∘f ( +g ‘ 𝑀 ) ( 𝑥 ∘ 𝑧 ) ) ) |
| 98 |
1 2 70
|
mendmulr |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑥 ∘ 𝑧 ) ) |
| 99 |
12 15 98
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑥 ∘ 𝑧 ) ) |
| 100 |
76 99
|
oveq12d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ∘ 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ∘ 𝑧 ) ) ) |
| 101 |
|
lmghm |
⊢ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑥 ∈ ( 𝑀 GrpHom 𝑀 ) ) |
| 102 |
|
ghmmhm |
⊢ ( 𝑥 ∈ ( 𝑀 GrpHom 𝑀 ) → 𝑥 ∈ ( 𝑀 MndHom 𝑀 ) ) |
| 103 |
12 101 102
|
3syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 ∈ ( 𝑀 MndHom 𝑀 ) ) |
| 104 |
30 6 6
|
mhmvlin |
⊢ ( ( 𝑥 ∈ ( 𝑀 MndHom 𝑀 ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝑀 ) ↑m ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ∘ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝑥 ∘ 𝑦 ) ∘f ( +g ‘ 𝑀 ) ( 𝑥 ∘ 𝑧 ) ) ) |
| 105 |
103 39 43 104
|
syl3anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ∘ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝑥 ∘ 𝑦 ) ∘f ( +g ‘ 𝑀 ) ( 𝑥 ∘ 𝑧 ) ) ) |
| 106 |
97 100 105
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( 𝑥 ∘ ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 107 |
92 93 106
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) ) ) |
| 108 |
1 2 70
|
mendmulr |
⊢ ( ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘ 𝑧 ) ) |
| 109 |
14 15 108
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘ 𝑧 ) ) |
| 110 |
18
|
oveq1d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) ) |
| 111 |
1 2 6 7
|
mendplusg |
⊢ ( ( ( 𝑥 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑦 ∘ 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ∘ 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ∘ 𝑧 ) ) = ( ( 𝑥 ∘ 𝑧 ) ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘ 𝑧 ) ) ) |
| 112 |
95 86 111
|
syl2anc |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘ 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ∘ 𝑧 ) ) = ( ( 𝑥 ∘ 𝑧 ) ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘ 𝑧 ) ) ) |
| 113 |
99 83
|
oveq12d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ∘ 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ∘ 𝑧 ) ) ) |
| 114 |
|
ffn |
⊢ ( 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) → 𝑥 Fn ( Base ‘ 𝑀 ) ) |
| 115 |
12 31 114
|
3syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 Fn ( Base ‘ 𝑀 ) ) |
| 116 |
|
ffn |
⊢ ( 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) → 𝑦 Fn ( Base ‘ 𝑀 ) ) |
| 117 |
13 36 116
|
3syl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 Fn ( Base ‘ 𝑀 ) ) |
| 118 |
33
|
a1i |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( Base ‘ 𝑀 ) ∈ V ) |
| 119 |
|
inidm |
⊢ ( ( Base ‘ 𝑀 ) ∩ ( Base ‘ 𝑀 ) ) = ( Base ‘ 𝑀 ) |
| 120 |
115 117 41 118 118 118 119
|
ofco |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘ 𝑧 ) = ( ( 𝑥 ∘ 𝑧 ) ∘f ( +g ‘ 𝑀 ) ( 𝑦 ∘ 𝑧 ) ) ) |
| 121 |
112 113 120
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ∘ 𝑧 ) ) |
| 122 |
109 110 121
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝐴 ) 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) ) |
| 123 |
30
|
idlmhm |
⊢ ( 𝑀 ∈ LMod → ( I ↾ ( Base ‘ 𝑀 ) ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 124 |
1 2 70
|
mendmulr |
⊢ ( ( ( I ↾ ( Base ‘ 𝑀 ) ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( I ↾ ( Base ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = ( ( I ↾ ( Base ‘ 𝑀 ) ) ∘ 𝑥 ) ) |
| 125 |
123 124
|
sylan |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( I ↾ ( Base ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = ( ( I ↾ ( Base ‘ 𝑀 ) ) ∘ 𝑥 ) ) |
| 126 |
31
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 127 |
|
fcoi2 |
⊢ ( 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) → ( ( I ↾ ( Base ‘ 𝑀 ) ) ∘ 𝑥 ) = 𝑥 ) |
| 128 |
126 127
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( I ↾ ( Base ‘ 𝑀 ) ) ∘ 𝑥 ) = 𝑥 ) |
| 129 |
125 128
|
eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( I ↾ ( Base ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = 𝑥 ) |
| 130 |
|
id |
⊢ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 131 |
1 2 70
|
mendmulr |
⊢ ( ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( I ↾ ( Base ‘ 𝑀 ) ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( I ↾ ( Base ‘ 𝑀 ) ) ) = ( 𝑥 ∘ ( I ↾ ( Base ‘ 𝑀 ) ) ) ) |
| 132 |
130 123 131
|
syl2anr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( I ↾ ( Base ‘ 𝑀 ) ) ) = ( 𝑥 ∘ ( I ↾ ( Base ‘ 𝑀 ) ) ) ) |
| 133 |
|
fcoi1 |
⊢ ( 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) → ( 𝑥 ∘ ( I ↾ ( Base ‘ 𝑀 ) ) ) = 𝑥 ) |
| 134 |
126 133
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ∘ ( I ↾ ( Base ‘ 𝑀 ) ) ) = 𝑥 ) |
| 135 |
132 134
|
eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( I ↾ ( Base ‘ 𝑀 ) ) ) = 𝑥 ) |
| 136 |
3 4 5 69 74 90 107 122 123 129 135
|
isringd |
⊢ ( 𝑀 ∈ LMod → 𝐴 ∈ Ring ) |