| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mendassa.a |
⊢ 𝐴 = ( MEndo ‘ 𝑀 ) |
| 2 |
|
mendassa.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
| 3 |
1
|
mendbas |
⊢ ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 ) |
| 4 |
3
|
a1i |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 ) ) |
| 5 |
|
eqidd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( +g ‘ 𝐴 ) = ( +g ‘ 𝐴 ) ) |
| 6 |
1 2
|
mendsca |
⊢ 𝑆 = ( Scalar ‘ 𝐴 ) |
| 7 |
6
|
a1i |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝑆 = ( Scalar ‘ 𝐴 ) ) |
| 8 |
|
eqidd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 9 |
|
eqidd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
| 10 |
|
eqidd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) ) |
| 11 |
|
eqidd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) ) |
| 12 |
|
eqidd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) ) |
| 13 |
|
crngring |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝑆 ∈ Ring ) |
| 15 |
1
|
mendring |
⊢ ( 𝑀 ∈ LMod → 𝐴 ∈ Ring ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝐴 ∈ Ring ) |
| 17 |
|
ringgrp |
⊢ ( 𝐴 ∈ Ring → 𝐴 ∈ Grp ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝐴 ∈ Grp ) |
| 19 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 22 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
| 23 |
1 19 3 2 20 21 22
|
mendvsca |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
| 24 |
23
|
3adant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
| 25 |
21 19 2 20
|
lmhmvsca |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 26 |
25
|
3adant1l |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 27 |
24 26
|
eqeltrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 28 |
|
simpr2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 29 |
|
simpr3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 30 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 31 |
|
eqid |
⊢ ( +g ‘ 𝐴 ) = ( +g ‘ 𝐴 ) |
| 32 |
1 3 30 31
|
mendplusg |
⊢ ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 33 |
28 29 32
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 34 |
33
|
oveq2d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 35 |
|
simpr1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 36 |
18
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝐴 ∈ Grp ) |
| 37 |
3 31
|
grpcl |
⊢ ( ( 𝐴 ∈ Grp ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 38 |
36 28 29 37
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 39 |
1 19 3 2 20 21 22
|
mendvsca |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) ) |
| 40 |
35 38 39
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) ) |
| 41 |
35 28 23
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
| 42 |
1 19 3 2 20 21 22
|
mendvsca |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 43 |
35 29 42
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 44 |
41 43
|
oveq12d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) |
| 45 |
27
|
3adant3r3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 46 |
|
eleq1w |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ↔ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) |
| 47 |
46
|
3anbi3d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) ↔ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ) |
| 48 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) |
| 49 |
48
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ↔ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) ) |
| 50 |
47 49
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) ↔ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) ) ) |
| 51 |
50 27
|
chvarvv |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 52 |
51
|
3adant3r2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 53 |
1 3 30 31
|
mendplusg |
⊢ ( ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) ) |
| 54 |
45 52 53
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) ) |
| 55 |
|
fvexd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( Base ‘ 𝑀 ) ∈ V ) |
| 56 |
|
fconst6g |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑆 ) → ( ( Base ‘ 𝑀 ) × { 𝑥 } ) : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 57 |
35 56
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( Base ‘ 𝑀 ) × { 𝑥 } ) : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 58 |
21 21
|
lmhmf |
⊢ ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 59 |
28 58
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 60 |
21 21
|
lmhmf |
⊢ ( 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 61 |
29 60
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 62 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑀 ∈ LMod ) |
| 63 |
21 30 2 19 20
|
lmodvsdi |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑤 ∈ ( Base ‘ 𝑆 ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ∧ 𝑢 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑤 ( ·𝑠 ‘ 𝑀 ) ( 𝑣 ( +g ‘ 𝑀 ) 𝑢 ) ) = ( ( 𝑤 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ( +g ‘ 𝑀 ) ( 𝑤 ( ·𝑠 ‘ 𝑀 ) 𝑢 ) ) ) |
| 64 |
62 63
|
sylan |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ ( 𝑤 ∈ ( Base ‘ 𝑆 ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ∧ 𝑢 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑤 ( ·𝑠 ‘ 𝑀 ) ( 𝑣 ( +g ‘ 𝑀 ) 𝑢 ) ) = ( ( 𝑤 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ( +g ‘ 𝑀 ) ( 𝑤 ( ·𝑠 ‘ 𝑀 ) 𝑢 ) ) ) |
| 65 |
55 57 59 61 64
|
caofdi |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) = ( ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∘f ( +g ‘ 𝑀 ) ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) |
| 66 |
44 54 65
|
3eqtr4d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ∘f ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 67 |
34 40 66
|
3eqtr4d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 𝑦 ( +g ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ( +g ‘ 𝐴 ) ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) ) |
| 68 |
|
fvexd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( Base ‘ 𝑀 ) ∈ V ) |
| 69 |
|
simpr3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 70 |
69 60
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 71 |
|
simpr1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 72 |
71 56
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( Base ‘ 𝑀 ) × { 𝑥 } ) : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 73 |
|
simpr2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
| 74 |
|
fconst6g |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑆 ) → ( ( Base ‘ 𝑀 ) × { 𝑦 } ) : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 75 |
73 74
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( Base ‘ 𝑀 ) × { 𝑦 } ) : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 76 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑀 ∈ LMod ) |
| 77 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 78 |
21 30 2 19 20 77
|
lmodvsdir |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑤 ∈ ( Base ‘ 𝑆 ) ∧ 𝑣 ∈ ( Base ‘ 𝑆 ) ∧ 𝑢 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑤 ( +g ‘ 𝑆 ) 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑢 ) = ( ( 𝑤 ( ·𝑠 ‘ 𝑀 ) 𝑢 ) ( +g ‘ 𝑀 ) ( 𝑣 ( ·𝑠 ‘ 𝑀 ) 𝑢 ) ) ) |
| 79 |
76 78
|
sylan |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ ( 𝑤 ∈ ( Base ‘ 𝑆 ) ∧ 𝑣 ∈ ( Base ‘ 𝑆 ) ∧ 𝑢 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑤 ( +g ‘ 𝑆 ) 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑢 ) = ( ( 𝑤 ( ·𝑠 ‘ 𝑀 ) 𝑢 ) ( +g ‘ 𝑀 ) ( 𝑣 ( ·𝑠 ‘ 𝑀 ) 𝑢 ) ) ) |
| 80 |
68 70 72 75 79
|
caofdir |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( +g ‘ 𝑆 ) ( ( Base ‘ 𝑀 ) × { 𝑦 } ) ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) = ( ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ∘f ( +g ‘ 𝑀 ) ( ( ( Base ‘ 𝑀 ) × { 𝑦 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) |
| 81 |
14
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑆 ∈ Ring ) |
| 82 |
20 77
|
ringacl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 83 |
81 71 73 82
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 84 |
1 19 3 2 20 21 22
|
mendvsca |
⊢ ( ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 85 |
83 69 84
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 86 |
68 71 73
|
ofc12 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( +g ‘ 𝑆 ) ( ( Base ‘ 𝑀 ) × { 𝑦 } ) ) = ( ( Base ‘ 𝑀 ) × { ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) } ) ) |
| 87 |
86
|
oveq1d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( +g ‘ 𝑆 ) ( ( Base ‘ 𝑀 ) × { 𝑦 } ) ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 88 |
85 87
|
eqtr4d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( +g ‘ 𝑆 ) ( ( Base ‘ 𝑀 ) × { 𝑦 } ) ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 89 |
51
|
3adant3r2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 90 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↔ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) |
| 91 |
90
|
3anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ↔ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ) |
| 92 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) |
| 93 |
92
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ↔ ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) ) |
| 94 |
91 93
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) ↔ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) ) ) |
| 95 |
94 51
|
chvarvv |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 96 |
95
|
3adant3r1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
| 97 |
1 3 30 31
|
mendplusg |
⊢ ( ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∘f ( +g ‘ 𝑀 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) ) |
| 98 |
89 96 97
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∘f ( +g ‘ 𝑀 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) ) |
| 99 |
71 69 42
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 100 |
1 19 3 2 20 21 22
|
mendvsca |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑦 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 101 |
73 69 100
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑦 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 102 |
99 101
|
oveq12d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∘f ( +g ‘ 𝑀 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ∘f ( +g ‘ 𝑀 ) ( ( ( Base ‘ 𝑀 ) × { 𝑦 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) |
| 103 |
98 102
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ∘f ( +g ‘ 𝑀 ) ( ( ( Base ‘ 𝑀 ) × { 𝑦 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) |
| 104 |
80 88 103
|
3eqtr4d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ( +g ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) ) |
| 105 |
|
ovexd |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑘 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ V ) |
| 106 |
70
|
ffvelcdmda |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑘 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑧 ‘ 𝑘 ) ∈ ( Base ‘ 𝑀 ) ) |
| 107 |
|
fconstmpt |
⊢ ( ( Base ‘ 𝑀 ) × { ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) } ) = ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ) |
| 108 |
107
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( Base ‘ 𝑀 ) × { ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) } ) = ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ) ) |
| 109 |
70
|
feqmptd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 = ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑧 ‘ 𝑘 ) ) ) |
| 110 |
68 105 106 108 109
|
offval2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) = ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑘 ) ) ) ) |
| 111 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 112 |
20 111
|
ringcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 113 |
81 71 73 112
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 114 |
1 19 3 2 20 21 22
|
mendvsca |
⊢ ( ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 115 |
113 69 114
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 116 |
71
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑘 ∈ ( Base ‘ 𝑀 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 117 |
|
ovexd |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑘 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑘 ) ) ∈ V ) |
| 118 |
|
fconstmpt |
⊢ ( ( Base ‘ 𝑀 ) × { 𝑥 } ) = ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ 𝑥 ) |
| 119 |
118
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( Base ‘ 𝑀 ) × { 𝑥 } ) = ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ 𝑥 ) ) |
| 120 |
|
simplr2 |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑘 ∈ ( Base ‘ 𝑀 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
| 121 |
|
fconstmpt |
⊢ ( ( Base ‘ 𝑀 ) × { 𝑦 } ) = ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ 𝑦 ) |
| 122 |
121
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( Base ‘ 𝑀 ) × { 𝑦 } ) = ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ 𝑦 ) ) |
| 123 |
68 120 106 122 109
|
offval2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { 𝑦 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) = ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑘 ) ) ) ) |
| 124 |
101 123
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑘 ) ) ) ) |
| 125 |
68 116 117 119 124
|
offval2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑘 ) ) ) ) ) |
| 126 |
1 19 3 2 20 21 22
|
mendvsca |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) ) |
| 127 |
71 96 126
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) ) |
| 128 |
76
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑘 ∈ ( Base ‘ 𝑀 ) ) → 𝑀 ∈ LMod ) |
| 129 |
21 2 19 20 111
|
lmodvsass |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝑧 ‘ 𝑘 ) ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑘 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑘 ) ) ) ) |
| 130 |
128 116 120 106 129
|
syl13anc |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑘 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑘 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑘 ) ) ) ) |
| 131 |
130
|
mpteq2dva |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑘 ) ) ) ) ) |
| 132 |
125 127 131
|
3eqtr4d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( 𝑘 ∈ ( Base ‘ 𝑀 ) ↦ ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑘 ) ) ) ) |
| 133 |
110 115 132
|
3eqtr4d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 𝑦 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) ) |
| 134 |
14
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → 𝑆 ∈ Ring ) |
| 135 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 136 |
20 135
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 137 |
134 136
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 138 |
1 19 3 2 20 21 22
|
mendvsca |
⊢ ( ( ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ 𝐴 ) 𝑥 ) = ( ( ( Base ‘ 𝑀 ) × { ( 1r ‘ 𝑆 ) } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) |
| 139 |
137 138
|
sylancom |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ 𝐴 ) 𝑥 ) = ( ( ( Base ‘ 𝑀 ) × { ( 1r ‘ 𝑆 ) } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) |
| 140 |
|
fvexd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( Base ‘ 𝑀 ) ∈ V ) |
| 141 |
21 21
|
lmhmf |
⊢ ( 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 142 |
141
|
adantl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → 𝑥 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
| 143 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → 𝑀 ∈ LMod ) |
| 144 |
21 2 19 135
|
lmodvs1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) = 𝑦 ) |
| 145 |
143 144
|
sylan |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ 𝑀 ) 𝑦 ) = 𝑦 ) |
| 146 |
140 142 137 145
|
caofid0l |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( ( Base ‘ 𝑀 ) × { ( 1r ‘ 𝑆 ) } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = 𝑥 ) |
| 147 |
139 146
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ 𝑥 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 1r ‘ 𝑆 ) ( ·𝑠 ‘ 𝐴 ) 𝑥 ) = 𝑥 ) |
| 148 |
4 5 7 8 9 10 11 12 14 18 27 67 104 133 147
|
islmodd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝐴 ∈ LMod ) |