Metamath Proof Explorer


Theorem mendlmod

Description: The module endomorphism algebra is a left module. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses mendassa.a A = MEndo M
mendassa.s S = Scalar M
Assertion mendlmod M LMod S CRing A LMod

Proof

Step Hyp Ref Expression
1 mendassa.a A = MEndo M
2 mendassa.s S = Scalar M
3 1 mendbas M LMHom M = Base A
4 3 a1i M LMod S CRing M LMHom M = Base A
5 eqidd M LMod S CRing + A = + A
6 1 2 mendsca S = Scalar A
7 6 a1i M LMod S CRing S = Scalar A
8 eqidd M LMod S CRing A = A
9 eqidd M LMod S CRing Base S = Base S
10 eqidd M LMod S CRing + S = + S
11 eqidd M LMod S CRing S = S
12 eqidd M LMod S CRing 1 S = 1 S
13 crngring S CRing S Ring
14 13 adantl M LMod S CRing S Ring
15 1 mendring M LMod A Ring
16 15 adantr M LMod S CRing A Ring
17 ringgrp A Ring A Grp
18 16 17 syl M LMod S CRing A Grp
19 eqid M = M
20 eqid Base S = Base S
21 eqid Base M = Base M
22 eqid A = A
23 1 19 3 2 20 21 22 mendvsca x Base S y M LMHom M x A y = Base M × x M f y
24 23 3adant1 M LMod S CRing x Base S y M LMHom M x A y = Base M × x M f y
25 21 19 2 20 lmhmvsca S CRing x Base S y M LMHom M Base M × x M f y M LMHom M
26 25 3adant1l M LMod S CRing x Base S y M LMHom M Base M × x M f y M LMHom M
27 24 26 eqeltrd M LMod S CRing x Base S y M LMHom M x A y M LMHom M
28 simpr2 M LMod S CRing x Base S y M LMHom M z M LMHom M y M LMHom M
29 simpr3 M LMod S CRing x Base S y M LMHom M z M LMHom M z M LMHom M
30 eqid + M = + M
31 eqid + A = + A
32 1 3 30 31 mendplusg y M LMHom M z M LMHom M y + A z = y + M f z
33 28 29 32 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M y + A z = y + M f z
34 33 oveq2d M LMod S CRing x Base S y M LMHom M z M LMHom M Base M × x M f y + A z = Base M × x M f y + M f z
35 simpr1 M LMod S CRing x Base S y M LMHom M z M LMHom M x Base S
36 18 adantr M LMod S CRing x Base S y M LMHom M z M LMHom M A Grp
37 3 31 grpcl A Grp y M LMHom M z M LMHom M y + A z M LMHom M
38 36 28 29 37 syl3anc M LMod S CRing x Base S y M LMHom M z M LMHom M y + A z M LMHom M
39 1 19 3 2 20 21 22 mendvsca x Base S y + A z M LMHom M x A y + A z = Base M × x M f y + A z
40 35 38 39 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A y + A z = Base M × x M f y + A z
41 35 28 23 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A y = Base M × x M f y
42 1 19 3 2 20 21 22 mendvsca x Base S z M LMHom M x A z = Base M × x M f z
43 35 29 42 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A z = Base M × x M f z
44 41 43 oveq12d M LMod S CRing x Base S y M LMHom M z M LMHom M x A y + M f x A z = Base M × x M f y + M f Base M × x M f z
45 27 3adant3r3 M LMod S CRing x Base S y M LMHom M z M LMHom M x A y M LMHom M
46 eleq1w y = z y M LMHom M z M LMHom M
47 46 3anbi3d y = z M LMod S CRing x Base S y M LMHom M M LMod S CRing x Base S z M LMHom M
48 oveq2 y = z x A y = x A z
49 48 eleq1d y = z x A y M LMHom M x A z M LMHom M
50 47 49 imbi12d y = z M LMod S CRing x Base S y M LMHom M x A y M LMHom M M LMod S CRing x Base S z M LMHom M x A z M LMHom M
51 50 27 chvarvv M LMod S CRing x Base S z M LMHom M x A z M LMHom M
52 51 3adant3r2 M LMod S CRing x Base S y M LMHom M z M LMHom M x A z M LMHom M
53 1 3 30 31 mendplusg x A y M LMHom M x A z M LMHom M x A y + A x A z = x A y + M f x A z
54 45 52 53 syl2anc M LMod S CRing x Base S y M LMHom M z M LMHom M x A y + A x A z = x A y + M f x A z
55 fvexd M LMod S CRing x Base S y M LMHom M z M LMHom M Base M V
56 fconst6g x Base S Base M × x : Base M Base S
57 35 56 syl M LMod S CRing x Base S y M LMHom M z M LMHom M Base M × x : Base M Base S
58 21 21 lmhmf y M LMHom M y : Base M Base M
59 28 58 syl M LMod S CRing x Base S y M LMHom M z M LMHom M y : Base M Base M
60 21 21 lmhmf z M LMHom M z : Base M Base M
61 29 60 syl M LMod S CRing x Base S y M LMHom M z M LMHom M z : Base M Base M
62 simpll M LMod S CRing x Base S y M LMHom M z M LMHom M M LMod
63 21 30 2 19 20 lmodvsdi M LMod w Base S v Base M u Base M w M v + M u = w M v + M w M u
64 62 63 sylan M LMod S CRing x Base S y M LMHom M z M LMHom M w Base S v Base M u Base M w M v + M u = w M v + M w M u
65 55 57 59 61 64 caofdi M LMod S CRing x Base S y M LMHom M z M LMHom M Base M × x M f y + M f z = Base M × x M f y + M f Base M × x M f z
66 44 54 65 3eqtr4d M LMod S CRing x Base S y M LMHom M z M LMHom M x A y + A x A z = Base M × x M f y + M f z
67 34 40 66 3eqtr4d M LMod S CRing x Base S y M LMHom M z M LMHom M x A y + A z = x A y + A x A z
68 fvexd M LMod S CRing x Base S y Base S z M LMHom M Base M V
69 simpr3 M LMod S CRing x Base S y Base S z M LMHom M z M LMHom M
70 69 60 syl M LMod S CRing x Base S y Base S z M LMHom M z : Base M Base M
71 simpr1 M LMod S CRing x Base S y Base S z M LMHom M x Base S
72 71 56 syl M LMod S CRing x Base S y Base S z M LMHom M Base M × x : Base M Base S
73 simpr2 M LMod S CRing x Base S y Base S z M LMHom M y Base S
74 fconst6g y Base S Base M × y : Base M Base S
75 73 74 syl M LMod S CRing x Base S y Base S z M LMHom M Base M × y : Base M Base S
76 simpll M LMod S CRing x Base S y Base S z M LMHom M M LMod
77 eqid + S = + S
78 21 30 2 19 20 77 lmodvsdir M LMod w Base S v Base S u Base M w + S v M u = w M u + M v M u
79 76 78 sylan M LMod S CRing x Base S y Base S z M LMHom M w Base S v Base S u Base M w + S v M u = w M u + M v M u
80 68 70 72 75 79 caofdir M LMod S CRing x Base S y Base S z M LMHom M Base M × x + S f Base M × y M f z = Base M × x M f z + M f Base M × y M f z
81 14 adantr M LMod S CRing x Base S y Base S z M LMHom M S Ring
82 20 77 ringacl S Ring x Base S y Base S x + S y Base S
83 81 71 73 82 syl3anc M LMod S CRing x Base S y Base S z M LMHom M x + S y Base S
84 1 19 3 2 20 21 22 mendvsca x + S y Base S z M LMHom M x + S y A z = Base M × x + S y M f z
85 83 69 84 syl2anc M LMod S CRing x Base S y Base S z M LMHom M x + S y A z = Base M × x + S y M f z
86 68 71 73 ofc12 M LMod S CRing x Base S y Base S z M LMHom M Base M × x + S f Base M × y = Base M × x + S y
87 86 oveq1d M LMod S CRing x Base S y Base S z M LMHom M Base M × x + S f Base M × y M f z = Base M × x + S y M f z
88 85 87 eqtr4d M LMod S CRing x Base S y Base S z M LMHom M x + S y A z = Base M × x + S f Base M × y M f z
89 51 3adant3r2 M LMod S CRing x Base S y Base S z M LMHom M x A z M LMHom M
90 eleq1w x = y x Base S y Base S
91 90 3anbi2d x = y M LMod S CRing x Base S z M LMHom M M LMod S CRing y Base S z M LMHom M
92 oveq1 x = y x A z = y A z
93 92 eleq1d x = y x A z M LMHom M y A z M LMHom M
94 91 93 imbi12d x = y M LMod S CRing x Base S z M LMHom M x A z M LMHom M M LMod S CRing y Base S z M LMHom M y A z M LMHom M
95 94 51 chvarvv M LMod S CRing y Base S z M LMHom M y A z M LMHom M
96 95 3adant3r1 M LMod S CRing x Base S y Base S z M LMHom M y A z M LMHom M
97 1 3 30 31 mendplusg x A z M LMHom M y A z M LMHom M x A z + A y A z = x A z + M f y A z
98 89 96 97 syl2anc M LMod S CRing x Base S y Base S z M LMHom M x A z + A y A z = x A z + M f y A z
99 71 69 42 syl2anc M LMod S CRing x Base S y Base S z M LMHom M x A z = Base M × x M f z
100 1 19 3 2 20 21 22 mendvsca y Base S z M LMHom M y A z = Base M × y M f z
101 73 69 100 syl2anc M LMod S CRing x Base S y Base S z M LMHom M y A z = Base M × y M f z
102 99 101 oveq12d M LMod S CRing x Base S y Base S z M LMHom M x A z + M f y A z = Base M × x M f z + M f Base M × y M f z
103 98 102 eqtrd M LMod S CRing x Base S y Base S z M LMHom M x A z + A y A z = Base M × x M f z + M f Base M × y M f z
104 80 88 103 3eqtr4d M LMod S CRing x Base S y Base S z M LMHom M x + S y A z = x A z + A y A z
105 ovexd M LMod S CRing x Base S y Base S z M LMHom M k Base M x S y V
106 70 ffvelrnda M LMod S CRing x Base S y Base S z M LMHom M k Base M z k Base M
107 fconstmpt Base M × x S y = k Base M x S y
108 107 a1i M LMod S CRing x Base S y Base S z M LMHom M Base M × x S y = k Base M x S y
109 70 feqmptd M LMod S CRing x Base S y Base S z M LMHom M z = k Base M z k
110 68 105 106 108 109 offval2 M LMod S CRing x Base S y Base S z M LMHom M Base M × x S y M f z = k Base M x S y M z k
111 eqid S = S
112 20 111 ringcl S Ring x Base S y Base S x S y Base S
113 81 71 73 112 syl3anc M LMod S CRing x Base S y Base S z M LMHom M x S y Base S
114 1 19 3 2 20 21 22 mendvsca x S y Base S z M LMHom M x S y A z = Base M × x S y M f z
115 113 69 114 syl2anc M LMod S CRing x Base S y Base S z M LMHom M x S y A z = Base M × x S y M f z
116 71 adantr M LMod S CRing x Base S y Base S z M LMHom M k Base M x Base S
117 ovexd M LMod S CRing x Base S y Base S z M LMHom M k Base M y M z k V
118 fconstmpt Base M × x = k Base M x
119 118 a1i M LMod S CRing x Base S y Base S z M LMHom M Base M × x = k Base M x
120 simplr2 M LMod S CRing x Base S y Base S z M LMHom M k Base M y Base S
121 fconstmpt Base M × y = k Base M y
122 121 a1i M LMod S CRing x Base S y Base S z M LMHom M Base M × y = k Base M y
123 68 120 106 122 109 offval2 M LMod S CRing x Base S y Base S z M LMHom M Base M × y M f z = k Base M y M z k
124 101 123 eqtrd M LMod S CRing x Base S y Base S z M LMHom M y A z = k Base M y M z k
125 68 116 117 119 124 offval2 M LMod S CRing x Base S y Base S z M LMHom M Base M × x M f y A z = k Base M x M y M z k
126 1 19 3 2 20 21 22 mendvsca x Base S y A z M LMHom M x A y A z = Base M × x M f y A z
127 71 96 126 syl2anc M LMod S CRing x Base S y Base S z M LMHom M x A y A z = Base M × x M f y A z
128 76 adantr M LMod S CRing x Base S y Base S z M LMHom M k Base M M LMod
129 21 2 19 20 111 lmodvsass M LMod x Base S y Base S z k Base M x S y M z k = x M y M z k
130 128 116 120 106 129 syl13anc M LMod S CRing x Base S y Base S z M LMHom M k Base M x S y M z k = x M y M z k
131 130 mpteq2dva M LMod S CRing x Base S y Base S z M LMHom M k Base M x S y M z k = k Base M x M y M z k
132 125 127 131 3eqtr4d M LMod S CRing x Base S y Base S z M LMHom M x A y A z = k Base M x S y M z k
133 110 115 132 3eqtr4d M LMod S CRing x Base S y Base S z M LMHom M x S y A z = x A y A z
134 14 adantr M LMod S CRing x M LMHom M S Ring
135 eqid 1 S = 1 S
136 20 135 ringidcl S Ring 1 S Base S
137 134 136 syl M LMod S CRing x M LMHom M 1 S Base S
138 1 19 3 2 20 21 22 mendvsca 1 S Base S x M LMHom M 1 S A x = Base M × 1 S M f x
139 137 138 sylancom M LMod S CRing x M LMHom M 1 S A x = Base M × 1 S M f x
140 fvexd M LMod S CRing x M LMHom M Base M V
141 21 21 lmhmf x M LMHom M x : Base M Base M
142 141 adantl M LMod S CRing x M LMHom M x : Base M Base M
143 simpll M LMod S CRing x M LMHom M M LMod
144 21 2 19 135 lmodvs1 M LMod y Base M 1 S M y = y
145 143 144 sylan M LMod S CRing x M LMHom M y Base M 1 S M y = y
146 140 142 137 145 caofid0l M LMod S CRing x M LMHom M Base M × 1 S M f x = x
147 139 146 eqtrd M LMod S CRing x M LMHom M 1 S A x = x
148 4 5 7 8 9 10 11 12 14 18 27 67 104 133 147 islmodd M LMod S CRing A LMod