Metamath Proof Explorer


Theorem lmhmvsca

Description: The pointwise scalar product of a linear function and a constant is linear, over a commutative ring. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses lmhmvsca.v V=BaseM
lmhmvsca.s ·˙=N
lmhmvsca.j J=ScalarN
lmhmvsca.k K=BaseJ
Assertion lmhmvsca JCRingAKFMLMHomNV×A·˙fFMLMHomN

Proof

Step Hyp Ref Expression
1 lmhmvsca.v V=BaseM
2 lmhmvsca.s ·˙=N
3 lmhmvsca.j J=ScalarN
4 lmhmvsca.k K=BaseJ
5 eqid M=M
6 eqid ScalarM=ScalarM
7 eqid BaseScalarM=BaseScalarM
8 lmhmlmod1 FMLMHomNMLMod
9 8 3ad2ant3 JCRingAKFMLMHomNMLMod
10 lmhmlmod2 FMLMHomNNLMod
11 10 3ad2ant3 JCRingAKFMLMHomNNLMod
12 6 3 lmhmsca FMLMHomNJ=ScalarM
13 12 3ad2ant3 JCRingAKFMLMHomNJ=ScalarM
14 1 fvexi VV
15 14 a1i JCRingAKFMLMHomNVV
16 simpl2 JCRingAKFMLMHomNvVAK
17 eqid BaseN=BaseN
18 1 17 lmhmf FMLMHomNF:VBaseN
19 18 3ad2ant3 JCRingAKFMLMHomNF:VBaseN
20 19 ffvelcdmda JCRingAKFMLMHomNvVFvBaseN
21 fconstmpt V×A=vVA
22 21 a1i JCRingAKFMLMHomNV×A=vVA
23 19 feqmptd JCRingAKFMLMHomNF=vVFv
24 15 16 20 22 23 offval2 JCRingAKFMLMHomNV×A·˙fF=vVA·˙Fv
25 eqidd JCRingAKFMLMHomNuBaseNA·˙u=uBaseNA·˙u
26 oveq2 u=FvA·˙u=A·˙Fv
27 20 23 25 26 fmptco JCRingAKFMLMHomNuBaseNA·˙uF=vVA·˙Fv
28 24 27 eqtr4d JCRingAKFMLMHomNV×A·˙fF=uBaseNA·˙uF
29 simp2 JCRingAKFMLMHomNAK
30 17 3 2 4 lmodvsghm NLModAKuBaseNA·˙uNGrpHomN
31 11 29 30 syl2anc JCRingAKFMLMHomNuBaseNA·˙uNGrpHomN
32 lmghm FMLMHomNFMGrpHomN
33 32 3ad2ant3 JCRingAKFMLMHomNFMGrpHomN
34 ghmco uBaseNA·˙uNGrpHomNFMGrpHomNuBaseNA·˙uFMGrpHomN
35 31 33 34 syl2anc JCRingAKFMLMHomNuBaseNA·˙uFMGrpHomN
36 28 35 eqeltrd JCRingAKFMLMHomNV×A·˙fFMGrpHomN
37 simpl1 JCRingAKFMLMHomNxBaseScalarMyVJCRing
38 simpl2 JCRingAKFMLMHomNxBaseScalarMyVAK
39 simprl JCRingAKFMLMHomNxBaseScalarMyVxBaseScalarM
40 13 fveq2d JCRingAKFMLMHomNBaseJ=BaseScalarM
41 4 40 eqtrid JCRingAKFMLMHomNK=BaseScalarM
42 41 adantr JCRingAKFMLMHomNxBaseScalarMyVK=BaseScalarM
43 39 42 eleqtrrd JCRingAKFMLMHomNxBaseScalarMyVxK
44 eqid J=J
45 4 44 crngcom JCRingAKxKAJx=xJA
46 37 38 43 45 syl3anc JCRingAKFMLMHomNxBaseScalarMyVAJx=xJA
47 46 oveq1d JCRingAKFMLMHomNxBaseScalarMyVAJx·˙Fy=xJA·˙Fy
48 11 adantr JCRingAKFMLMHomNxBaseScalarMyVNLMod
49 19 adantr JCRingAKFMLMHomNxBaseScalarMyVF:VBaseN
50 simprr JCRingAKFMLMHomNxBaseScalarMyVyV
51 49 50 ffvelcdmd JCRingAKFMLMHomNxBaseScalarMyVFyBaseN
52 17 3 2 4 44 lmodvsass NLModAKxKFyBaseNAJx·˙Fy=A·˙x·˙Fy
53 48 38 43 51 52 syl13anc JCRingAKFMLMHomNxBaseScalarMyVAJx·˙Fy=A·˙x·˙Fy
54 17 3 2 4 44 lmodvsass NLModxKAKFyBaseNxJA·˙Fy=x·˙A·˙Fy
55 48 43 38 51 54 syl13anc JCRingAKFMLMHomNxBaseScalarMyVxJA·˙Fy=x·˙A·˙Fy
56 47 53 55 3eqtr3d JCRingAKFMLMHomNxBaseScalarMyVA·˙x·˙Fy=x·˙A·˙Fy
57 1 6 5 7 lmodvscl MLModxBaseScalarMyVxMyV
58 57 3expb MLModxBaseScalarMyVxMyV
59 9 58 sylan JCRingAKFMLMHomNxBaseScalarMyVxMyV
60 14 a1i JCRingAKFMLMHomNxBaseScalarMyVVV
61 19 ffnd JCRingAKFMLMHomNFFnV
62 61 adantr JCRingAKFMLMHomNxBaseScalarMyVFFnV
63 6 7 1 5 2 lmhmlin FMLMHomNxBaseScalarMyVFxMy=x·˙Fy
64 63 3expb FMLMHomNxBaseScalarMyVFxMy=x·˙Fy
65 64 3ad2antl3 JCRingAKFMLMHomNxBaseScalarMyVFxMy=x·˙Fy
66 65 adantr JCRingAKFMLMHomNxBaseScalarMyVxMyVFxMy=x·˙Fy
67 60 38 62 66 ofc1 JCRingAKFMLMHomNxBaseScalarMyVxMyVV×A·˙fFxMy=A·˙x·˙Fy
68 59 67 mpdan JCRingAKFMLMHomNxBaseScalarMyVV×A·˙fFxMy=A·˙x·˙Fy
69 eqidd JCRingAKFMLMHomNxBaseScalarMyVyVFy=Fy
70 60 38 62 69 ofc1 JCRingAKFMLMHomNxBaseScalarMyVyVV×A·˙fFy=A·˙Fy
71 50 70 mpdan JCRingAKFMLMHomNxBaseScalarMyVV×A·˙fFy=A·˙Fy
72 71 oveq2d JCRingAKFMLMHomNxBaseScalarMyVx·˙V×A·˙fFy=x·˙A·˙Fy
73 56 68 72 3eqtr4d JCRingAKFMLMHomNxBaseScalarMyVV×A·˙fFxMy=x·˙V×A·˙fFy
74 1 5 2 6 3 7 9 11 13 36 73 islmhmd JCRingAKFMLMHomNV×A·˙fFMLMHomN