| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmf1o.x |
|
| 2 |
|
lmhmf1o.y |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
lmhmlmod2 |
|
| 9 |
8
|
adantr |
|
| 10 |
|
lmhmlmod1 |
|
| 11 |
10
|
adantr |
|
| 12 |
6 5
|
lmhmsca |
|
| 13 |
12
|
eqcomd |
|
| 14 |
13
|
adantr |
|
| 15 |
|
lmghm |
|
| 16 |
1 2
|
ghmf1o |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
biimpa |
|
| 19 |
|
simpll |
|
| 20 |
14
|
fveq2d |
|
| 21 |
20
|
eleq2d |
|
| 22 |
21
|
biimpar |
|
| 23 |
22
|
adantrr |
|
| 24 |
|
f1ocnv |
|
| 25 |
|
f1of |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
adantl |
|
| 28 |
27
|
ffvelcdmda |
|
| 29 |
28
|
adantrl |
|
| 30 |
|
eqid |
|
| 31 |
6 30 1 4 3
|
lmhmlin |
|
| 32 |
19 23 29 31
|
syl3anc |
|
| 33 |
|
f1ocnvfv2 |
|
| 34 |
33
|
ad2ant2l |
|
| 35 |
34
|
oveq2d |
|
| 36 |
32 35
|
eqtrd |
|
| 37 |
|
simplr |
|
| 38 |
11
|
adantr |
|
| 39 |
1 6 4 30
|
lmodvscl |
|
| 40 |
38 23 29 39
|
syl3anc |
|
| 41 |
|
f1ocnvfv |
|
| 42 |
37 40 41
|
syl2anc |
|
| 43 |
36 42
|
mpd |
|
| 44 |
2 3 4 5 6 7 9 11 14 18 43
|
islmhmd |
|
| 45 |
1 2
|
lmhmf |
|
| 46 |
45
|
ffnd |
|
| 47 |
46
|
adantr |
|
| 48 |
2 1
|
lmhmf |
|
| 49 |
48
|
adantl |
|
| 50 |
49
|
ffnd |
|
| 51 |
|
dff1o4 |
|
| 52 |
47 50 51
|
sylanbrc |
|
| 53 |
44 52
|
impbida |
|