Metamath Proof Explorer


Theorem lmhmf1o

Description: A bijective module homomorphism is also converse homomorphic. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Hypotheses lmhmf1o.x X = Base S
lmhmf1o.y Y = Base T
Assertion lmhmf1o F S LMHom T F : X 1-1 onto Y F -1 T LMHom S

Proof

Step Hyp Ref Expression
1 lmhmf1o.x X = Base S
2 lmhmf1o.y Y = Base T
3 eqid T = T
4 eqid S = S
5 eqid Scalar T = Scalar T
6 eqid Scalar S = Scalar S
7 eqid Base Scalar T = Base Scalar T
8 lmhmlmod2 F S LMHom T T LMod
9 8 adantr F S LMHom T F : X 1-1 onto Y T LMod
10 lmhmlmod1 F S LMHom T S LMod
11 10 adantr F S LMHom T F : X 1-1 onto Y S LMod
12 6 5 lmhmsca F S LMHom T Scalar T = Scalar S
13 12 eqcomd F S LMHom T Scalar S = Scalar T
14 13 adantr F S LMHom T F : X 1-1 onto Y Scalar S = Scalar T
15 lmghm F S LMHom T F S GrpHom T
16 1 2 ghmf1o F S GrpHom T F : X 1-1 onto Y F -1 T GrpHom S
17 15 16 syl F S LMHom T F : X 1-1 onto Y F -1 T GrpHom S
18 17 biimpa F S LMHom T F : X 1-1 onto Y F -1 T GrpHom S
19 simpll F S LMHom T F : X 1-1 onto Y a Base Scalar T b Y F S LMHom T
20 14 fveq2d F S LMHom T F : X 1-1 onto Y Base Scalar S = Base Scalar T
21 20 eleq2d F S LMHom T F : X 1-1 onto Y a Base Scalar S a Base Scalar T
22 21 biimpar F S LMHom T F : X 1-1 onto Y a Base Scalar T a Base Scalar S
23 22 adantrr F S LMHom T F : X 1-1 onto Y a Base Scalar T b Y a Base Scalar S
24 f1ocnv F : X 1-1 onto Y F -1 : Y 1-1 onto X
25 f1of F -1 : Y 1-1 onto X F -1 : Y X
26 24 25 syl F : X 1-1 onto Y F -1 : Y X
27 26 adantl F S LMHom T F : X 1-1 onto Y F -1 : Y X
28 27 ffvelrnda F S LMHom T F : X 1-1 onto Y b Y F -1 b X
29 28 adantrl F S LMHom T F : X 1-1 onto Y a Base Scalar T b Y F -1 b X
30 eqid Base Scalar S = Base Scalar S
31 6 30 1 4 3 lmhmlin F S LMHom T a Base Scalar S F -1 b X F a S F -1 b = a T F F -1 b
32 19 23 29 31 syl3anc F S LMHom T F : X 1-1 onto Y a Base Scalar T b Y F a S F -1 b = a T F F -1 b
33 f1ocnvfv2 F : X 1-1 onto Y b Y F F -1 b = b
34 33 ad2ant2l F S LMHom T F : X 1-1 onto Y a Base Scalar T b Y F F -1 b = b
35 34 oveq2d F S LMHom T F : X 1-1 onto Y a Base Scalar T b Y a T F F -1 b = a T b
36 32 35 eqtrd F S LMHom T F : X 1-1 onto Y a Base Scalar T b Y F a S F -1 b = a T b
37 simplr F S LMHom T F : X 1-1 onto Y a Base Scalar T b Y F : X 1-1 onto Y
38 11 adantr F S LMHom T F : X 1-1 onto Y a Base Scalar T b Y S LMod
39 1 6 4 30 lmodvscl S LMod a Base Scalar S F -1 b X a S F -1 b X
40 38 23 29 39 syl3anc F S LMHom T F : X 1-1 onto Y a Base Scalar T b Y a S F -1 b X
41 f1ocnvfv F : X 1-1 onto Y a S F -1 b X F a S F -1 b = a T b F -1 a T b = a S F -1 b
42 37 40 41 syl2anc F S LMHom T F : X 1-1 onto Y a Base Scalar T b Y F a S F -1 b = a T b F -1 a T b = a S F -1 b
43 36 42 mpd F S LMHom T F : X 1-1 onto Y a Base Scalar T b Y F -1 a T b = a S F -1 b
44 2 3 4 5 6 7 9 11 14 18 43 islmhmd F S LMHom T F : X 1-1 onto Y F -1 T LMHom S
45 1 2 lmhmf F S LMHom T F : X Y
46 45 ffnd F S LMHom T F Fn X
47 46 adantr F S LMHom T F -1 T LMHom S F Fn X
48 2 1 lmhmf F -1 T LMHom S F -1 : Y X
49 48 adantl F S LMHom T F -1 T LMHom S F -1 : Y X
50 49 ffnd F S LMHom T F -1 T LMHom S F -1 Fn Y
51 dff1o4 F : X 1-1 onto Y F Fn X F -1 Fn Y
52 47 50 51 sylanbrc F S LMHom T F -1 T LMHom S F : X 1-1 onto Y
53 44 52 impbida F S LMHom T F : X 1-1 onto Y F -1 T LMHom S