Metamath Proof Explorer


Theorem lmhmima

Description: The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmima.x X = LSubSp S
lmhmima.y Y = LSubSp T
Assertion lmhmima F S LMHom T U X F U Y

Proof

Step Hyp Ref Expression
1 lmhmima.x X = LSubSp S
2 lmhmima.y Y = LSubSp T
3 lmghm F S LMHom T F S GrpHom T
4 lmhmlmod1 F S LMHom T S LMod
5 simpr F S LMHom T U X U X
6 1 lsssubg S LMod U X U SubGrp S
7 4 5 6 syl2an2r F S LMHom T U X U SubGrp S
8 ghmima F S GrpHom T U SubGrp S F U SubGrp T
9 3 7 8 syl2an2r F S LMHom T U X F U SubGrp T
10 eqid Base S = Base S
11 eqid Base T = Base T
12 10 11 lmhmf F S LMHom T F : Base S Base T
13 12 adantr F S LMHom T U X F : Base S Base T
14 ffn F : Base S Base T F Fn Base S
15 13 14 syl F S LMHom T U X F Fn Base S
16 10 1 lssss U X U Base S
17 5 16 syl F S LMHom T U X U Base S
18 15 17 fvelimabd F S LMHom T U X b F U c U F c = b
19 18 adantr F S LMHom T U X a Base Scalar T b F U c U F c = b
20 simpll F S LMHom T U X a Base Scalar T c U F S LMHom T
21 eqid Scalar S = Scalar S
22 eqid Scalar T = Scalar T
23 21 22 lmhmsca F S LMHom T Scalar T = Scalar S
24 23 adantr F S LMHom T U X Scalar T = Scalar S
25 24 fveq2d F S LMHom T U X Base Scalar T = Base Scalar S
26 25 eleq2d F S LMHom T U X a Base Scalar T a Base Scalar S
27 26 biimpa F S LMHom T U X a Base Scalar T a Base Scalar S
28 27 adantrr F S LMHom T U X a Base Scalar T c U a Base Scalar S
29 17 sselda F S LMHom T U X c U c Base S
30 29 adantrl F S LMHom T U X a Base Scalar T c U c Base S
31 eqid Base Scalar S = Base Scalar S
32 eqid S = S
33 eqid T = T
34 21 31 10 32 33 lmhmlin F S LMHom T a Base Scalar S c Base S F a S c = a T F c
35 20 28 30 34 syl3anc F S LMHom T U X a Base Scalar T c U F a S c = a T F c
36 20 12 14 3syl F S LMHom T U X a Base Scalar T c U F Fn Base S
37 simplr F S LMHom T U X a Base Scalar T c U U X
38 37 16 syl F S LMHom T U X a Base Scalar T c U U Base S
39 4 adantr F S LMHom T U X S LMod
40 39 adantr F S LMHom T U X a Base Scalar T c U S LMod
41 simprr F S LMHom T U X a Base Scalar T c U c U
42 21 32 31 1 lssvscl S LMod U X a Base Scalar S c U a S c U
43 40 37 28 41 42 syl22anc F S LMHom T U X a Base Scalar T c U a S c U
44 fnfvima F Fn Base S U Base S a S c U F a S c F U
45 36 38 43 44 syl3anc F S LMHom T U X a Base Scalar T c U F a S c F U
46 35 45 eqeltrrd F S LMHom T U X a Base Scalar T c U a T F c F U
47 46 anassrs F S LMHom T U X a Base Scalar T c U a T F c F U
48 oveq2 F c = b a T F c = a T b
49 48 eleq1d F c = b a T F c F U a T b F U
50 47 49 syl5ibcom F S LMHom T U X a Base Scalar T c U F c = b a T b F U
51 50 rexlimdva F S LMHom T U X a Base Scalar T c U F c = b a T b F U
52 19 51 sylbid F S LMHom T U X a Base Scalar T b F U a T b F U
53 52 impr F S LMHom T U X a Base Scalar T b F U a T b F U
54 53 ralrimivva F S LMHom T U X a Base Scalar T b F U a T b F U
55 lmhmlmod2 F S LMHom T T LMod
56 55 adantr F S LMHom T U X T LMod
57 eqid Base Scalar T = Base Scalar T
58 22 57 11 33 2 islss4 T LMod F U Y F U SubGrp T a Base Scalar T b F U a T b F U
59 56 58 syl F S LMHom T U X F U Y F U SubGrp T a Base Scalar T b F U a T b F U
60 9 54 59 mpbir2and F S LMHom T U X F U Y