Description: The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmhmima.x | |
|
lmhmima.y | |
||
Assertion | lmhmima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmima.x | |
|
2 | lmhmima.y | |
|
3 | lmghm | |
|
4 | lmhmlmod1 | |
|
5 | simpr | |
|
6 | 1 | lsssubg | |
7 | 4 5 6 | syl2an2r | |
8 | ghmima | |
|
9 | 3 7 8 | syl2an2r | |
10 | eqid | |
|
11 | eqid | |
|
12 | 10 11 | lmhmf | |
13 | 12 | adantr | |
14 | ffn | |
|
15 | 13 14 | syl | |
16 | 10 1 | lssss | |
17 | 5 16 | syl | |
18 | 15 17 | fvelimabd | |
19 | 18 | adantr | |
20 | simpll | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 21 22 | lmhmsca | |
24 | 23 | adantr | |
25 | 24 | fveq2d | |
26 | 25 | eleq2d | |
27 | 26 | biimpa | |
28 | 27 | adantrr | |
29 | 17 | sselda | |
30 | 29 | adantrl | |
31 | eqid | |
|
32 | eqid | |
|
33 | eqid | |
|
34 | 21 31 10 32 33 | lmhmlin | |
35 | 20 28 30 34 | syl3anc | |
36 | 20 12 14 | 3syl | |
37 | simplr | |
|
38 | 37 16 | syl | |
39 | 4 | adantr | |
40 | 39 | adantr | |
41 | simprr | |
|
42 | 21 32 31 1 | lssvscl | |
43 | 40 37 28 41 42 | syl22anc | |
44 | fnfvima | |
|
45 | 36 38 43 44 | syl3anc | |
46 | 35 45 | eqeltrrd | |
47 | 46 | anassrs | |
48 | oveq2 | |
|
49 | 48 | eleq1d | |
50 | 47 49 | syl5ibcom | |
51 | 50 | rexlimdva | |
52 | 19 51 | sylbid | |
53 | 52 | impr | |
54 | 53 | ralrimivva | |
55 | lmhmlmod2 | |
|
56 | 55 | adantr | |
57 | eqid | |
|
58 | 22 57 11 33 2 | islss4 | |
59 | 56 58 | syl | |
60 | 9 54 59 | mpbir2and | |