Metamath Proof Explorer


Theorem lmhmima

Description: The image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmima.x X=LSubSpS
lmhmima.y Y=LSubSpT
Assertion lmhmima FSLMHomTUXFUY

Proof

Step Hyp Ref Expression
1 lmhmima.x X=LSubSpS
2 lmhmima.y Y=LSubSpT
3 lmghm FSLMHomTFSGrpHomT
4 lmhmlmod1 FSLMHomTSLMod
5 simpr FSLMHomTUXUX
6 1 lsssubg SLModUXUSubGrpS
7 4 5 6 syl2an2r FSLMHomTUXUSubGrpS
8 ghmima FSGrpHomTUSubGrpSFUSubGrpT
9 3 7 8 syl2an2r FSLMHomTUXFUSubGrpT
10 eqid BaseS=BaseS
11 eqid BaseT=BaseT
12 10 11 lmhmf FSLMHomTF:BaseSBaseT
13 12 adantr FSLMHomTUXF:BaseSBaseT
14 ffn F:BaseSBaseTFFnBaseS
15 13 14 syl FSLMHomTUXFFnBaseS
16 10 1 lssss UXUBaseS
17 5 16 syl FSLMHomTUXUBaseS
18 15 17 fvelimabd FSLMHomTUXbFUcUFc=b
19 18 adantr FSLMHomTUXaBaseScalarTbFUcUFc=b
20 simpll FSLMHomTUXaBaseScalarTcUFSLMHomT
21 eqid ScalarS=ScalarS
22 eqid ScalarT=ScalarT
23 21 22 lmhmsca FSLMHomTScalarT=ScalarS
24 23 adantr FSLMHomTUXScalarT=ScalarS
25 24 fveq2d FSLMHomTUXBaseScalarT=BaseScalarS
26 25 eleq2d FSLMHomTUXaBaseScalarTaBaseScalarS
27 26 biimpa FSLMHomTUXaBaseScalarTaBaseScalarS
28 27 adantrr FSLMHomTUXaBaseScalarTcUaBaseScalarS
29 17 sselda FSLMHomTUXcUcBaseS
30 29 adantrl FSLMHomTUXaBaseScalarTcUcBaseS
31 eqid BaseScalarS=BaseScalarS
32 eqid S=S
33 eqid T=T
34 21 31 10 32 33 lmhmlin FSLMHomTaBaseScalarScBaseSFaSc=aTFc
35 20 28 30 34 syl3anc FSLMHomTUXaBaseScalarTcUFaSc=aTFc
36 20 12 14 3syl FSLMHomTUXaBaseScalarTcUFFnBaseS
37 simplr FSLMHomTUXaBaseScalarTcUUX
38 37 16 syl FSLMHomTUXaBaseScalarTcUUBaseS
39 4 adantr FSLMHomTUXSLMod
40 39 adantr FSLMHomTUXaBaseScalarTcUSLMod
41 simprr FSLMHomTUXaBaseScalarTcUcU
42 21 32 31 1 lssvscl SLModUXaBaseScalarScUaScU
43 40 37 28 41 42 syl22anc FSLMHomTUXaBaseScalarTcUaScU
44 fnfvima FFnBaseSUBaseSaScUFaScFU
45 36 38 43 44 syl3anc FSLMHomTUXaBaseScalarTcUFaScFU
46 35 45 eqeltrrd FSLMHomTUXaBaseScalarTcUaTFcFU
47 46 anassrs FSLMHomTUXaBaseScalarTcUaTFcFU
48 oveq2 Fc=baTFc=aTb
49 48 eleq1d Fc=baTFcFUaTbFU
50 47 49 syl5ibcom FSLMHomTUXaBaseScalarTcUFc=baTbFU
51 50 rexlimdva FSLMHomTUXaBaseScalarTcUFc=baTbFU
52 19 51 sylbid FSLMHomTUXaBaseScalarTbFUaTbFU
53 52 impr FSLMHomTUXaBaseScalarTbFUaTbFU
54 53 ralrimivva FSLMHomTUXaBaseScalarTbFUaTbFU
55 lmhmlmod2 FSLMHomTTLMod
56 55 adantr FSLMHomTUXTLMod
57 eqid BaseScalarT=BaseScalarT
58 22 57 11 33 2 islss4 TLModFUYFUSubGrpTaBaseScalarTbFUaTbFU
59 56 58 syl FSLMHomTUXFUYFUSubGrpTaBaseScalarTbFUaTbFU
60 9 54 59 mpbir2and FSLMHomTUXFUY