Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmima.x |
|
2 |
|
lmhmima.y |
|
3 |
|
lmghm |
|
4 |
|
lmhmlmod1 |
|
5 |
|
simpr |
|
6 |
1
|
lsssubg |
|
7 |
4 5 6
|
syl2an2r |
|
8 |
|
ghmima |
|
9 |
3 7 8
|
syl2an2r |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
10 11
|
lmhmf |
|
13 |
12
|
adantr |
|
14 |
|
ffn |
|
15 |
13 14
|
syl |
|
16 |
10 1
|
lssss |
|
17 |
5 16
|
syl |
|
18 |
15 17
|
fvelimabd |
|
19 |
18
|
adantr |
|
20 |
|
simpll |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
21 22
|
lmhmsca |
|
24 |
23
|
adantr |
|
25 |
24
|
fveq2d |
|
26 |
25
|
eleq2d |
|
27 |
26
|
biimpa |
|
28 |
27
|
adantrr |
|
29 |
17
|
sselda |
|
30 |
29
|
adantrl |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
21 31 10 32 33
|
lmhmlin |
|
35 |
20 28 30 34
|
syl3anc |
|
36 |
20 12 14
|
3syl |
|
37 |
|
simplr |
|
38 |
37 16
|
syl |
|
39 |
4
|
adantr |
|
40 |
39
|
adantr |
|
41 |
|
simprr |
|
42 |
21 32 31 1
|
lssvscl |
|
43 |
40 37 28 41 42
|
syl22anc |
|
44 |
|
fnfvima |
|
45 |
36 38 43 44
|
syl3anc |
|
46 |
35 45
|
eqeltrrd |
|
47 |
46
|
anassrs |
|
48 |
|
oveq2 |
|
49 |
48
|
eleq1d |
|
50 |
47 49
|
syl5ibcom |
|
51 |
50
|
rexlimdva |
|
52 |
19 51
|
sylbid |
|
53 |
52
|
impr |
|
54 |
53
|
ralrimivva |
|
55 |
|
lmhmlmod2 |
|
56 |
55
|
adantr |
|
57 |
|
eqid |
|
58 |
22 57 11 33 2
|
islss4 |
|
59 |
56 58
|
syl |
|
60 |
9 54 59
|
mpbir2and |
|