| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmima.x |
|
| 2 |
|
lmhmima.y |
|
| 3 |
|
lmghm |
|
| 4 |
|
lmhmlmod1 |
|
| 5 |
|
simpr |
|
| 6 |
1
|
lsssubg |
|
| 7 |
4 5 6
|
syl2an2r |
|
| 8 |
|
ghmima |
|
| 9 |
3 7 8
|
syl2an2r |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
10 11
|
lmhmf |
|
| 13 |
12
|
adantr |
|
| 14 |
|
ffn |
|
| 15 |
13 14
|
syl |
|
| 16 |
10 1
|
lssss |
|
| 17 |
5 16
|
syl |
|
| 18 |
15 17
|
fvelimabd |
|
| 19 |
18
|
adantr |
|
| 20 |
|
simpll |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
21 22
|
lmhmsca |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
fveq2d |
|
| 26 |
25
|
eleq2d |
|
| 27 |
26
|
biimpa |
|
| 28 |
27
|
adantrr |
|
| 29 |
17
|
sselda |
|
| 30 |
29
|
adantrl |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
21 31 10 32 33
|
lmhmlin |
|
| 35 |
20 28 30 34
|
syl3anc |
|
| 36 |
20 12 14
|
3syl |
|
| 37 |
|
simplr |
|
| 38 |
37 16
|
syl |
|
| 39 |
4
|
adantr |
|
| 40 |
39
|
adantr |
|
| 41 |
|
simprr |
|
| 42 |
21 32 31 1
|
lssvscl |
|
| 43 |
40 37 28 41 42
|
syl22anc |
|
| 44 |
|
fnfvima |
|
| 45 |
36 38 43 44
|
syl3anc |
|
| 46 |
35 45
|
eqeltrrd |
|
| 47 |
46
|
anassrs |
|
| 48 |
|
oveq2 |
|
| 49 |
48
|
eleq1d |
|
| 50 |
47 49
|
syl5ibcom |
|
| 51 |
50
|
rexlimdva |
|
| 52 |
19 51
|
sylbid |
|
| 53 |
52
|
impr |
|
| 54 |
53
|
ralrimivva |
|
| 55 |
|
lmhmlmod2 |
|
| 56 |
55
|
adantr |
|
| 57 |
|
eqid |
|
| 58 |
22 57 11 33 2
|
islss4 |
|
| 59 |
56 58
|
syl |
|
| 60 |
9 54 59
|
mpbir2and |
|