Metamath Proof Explorer


Theorem mendvsca

Description: A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015)

Ref Expression
Hypotheses mendvscafval.a A = MEndo M
mendvscafval.v · ˙ = M
mendvscafval.b B = Base A
mendvscafval.s S = Scalar M
mendvscafval.k K = Base S
mendvscafval.e E = Base M
mendvsca.w ˙ = A
Assertion mendvsca X K Y B X ˙ Y = E × X · ˙ f Y

Proof

Step Hyp Ref Expression
1 mendvscafval.a A = MEndo M
2 mendvscafval.v · ˙ = M
3 mendvscafval.b B = Base A
4 mendvscafval.s S = Scalar M
5 mendvscafval.k K = Base S
6 mendvscafval.e E = Base M
7 mendvsca.w ˙ = A
8 sneq x = X x = X
9 8 xpeq2d x = X E × x = E × X
10 id y = Y y = Y
11 9 10 oveqan12d x = X y = Y E × x · ˙ f y = E × X · ˙ f Y
12 1 2 3 4 5 6 mendvscafval A = x K , y B E × x · ˙ f y
13 7 12 eqtri ˙ = x K , y B E × x · ˙ f y
14 ovex E × X · ˙ f Y V
15 11 13 14 ovmpoa X K Y B X ˙ Y = E × X · ˙ f Y