Metamath Proof Explorer


Theorem mendring

Description: The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypothesis mendassa.a A = MEndo M
Assertion mendring M LMod A Ring

Proof

Step Hyp Ref Expression
1 mendassa.a A = MEndo M
2 1 mendbas M LMHom M = Base A
3 2 a1i M LMod M LMHom M = Base A
4 eqidd M LMod + A = + A
5 eqidd M LMod A = A
6 eqid + M = + M
7 eqid + A = + A
8 1 2 6 7 mendplusg x M LMHom M y M LMHom M x + A y = x + M f y
9 6 lmhmplusg x M LMHom M y M LMHom M x + M f y M LMHom M
10 8 9 eqeltrd x M LMHom M y M LMHom M x + A y M LMHom M
11 10 3adant1 M LMod x M LMHom M y M LMHom M x + A y M LMHom M
12 simpr1 M LMod x M LMHom M y M LMHom M z M LMHom M x M LMHom M
13 simpr2 M LMod x M LMHom M y M LMHom M z M LMHom M y M LMHom M
14 12 13 9 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x + M f y M LMHom M
15 simpr3 M LMod x M LMHom M y M LMHom M z M LMHom M z M LMHom M
16 1 2 6 7 mendplusg x + M f y M LMHom M z M LMHom M x + M f y + A z = x + M f y + M f z
17 14 15 16 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x + M f y + A z = x + M f y + M f z
18 12 13 8 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x + A y = x + M f y
19 18 oveq1d M LMod x M LMHom M y M LMHom M z M LMHom M x + A y + A z = x + M f y + A z
20 6 lmhmplusg y M LMHom M z M LMHom M y + M f z M LMHom M
21 13 15 20 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M y + M f z M LMHom M
22 1 2 6 7 mendplusg x M LMHom M y + M f z M LMHom M x + A y + M f z = x + M f y + M f z
23 12 21 22 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x + A y + M f z = x + M f y + M f z
24 1 2 6 7 mendplusg y M LMHom M z M LMHom M y + A z = y + M f z
25 13 15 24 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M y + A z = y + M f z
26 25 oveq2d M LMod x M LMHom M y M LMHom M z M LMHom M x + A y + A z = x + A y + M f z
27 lmodgrp M LMod M Grp
28 27 grpmndd M LMod M Mnd
29 28 adantr M LMod x M LMHom M y M LMHom M z M LMHom M M Mnd
30 eqid Base M = Base M
31 30 30 lmhmf x M LMHom M x : Base M Base M
32 12 31 syl M LMod x M LMHom M y M LMHom M z M LMHom M x : Base M Base M
33 fvex Base M V
34 33 33 elmap x Base M Base M x : Base M Base M
35 32 34 sylibr M LMod x M LMHom M y M LMHom M z M LMHom M x Base M Base M
36 30 30 lmhmf y M LMHom M y : Base M Base M
37 13 36 syl M LMod x M LMHom M y M LMHom M z M LMHom M y : Base M Base M
38 33 33 elmap y Base M Base M y : Base M Base M
39 37 38 sylibr M LMod x M LMHom M y M LMHom M z M LMHom M y Base M Base M
40 30 30 lmhmf z M LMHom M z : Base M Base M
41 15 40 syl M LMod x M LMHom M y M LMHom M z M LMHom M z : Base M Base M
42 33 33 elmap z Base M Base M z : Base M Base M
43 41 42 sylibr M LMod x M LMHom M y M LMHom M z M LMHom M z Base M Base M
44 30 6 mndvass M Mnd x Base M Base M y Base M Base M z Base M Base M x + M f y + M f z = x + M f y + M f z
45 29 35 39 43 44 syl13anc M LMod x M LMHom M y M LMHom M z M LMHom M x + M f y + M f z = x + M f y + M f z
46 23 26 45 3eqtr4d M LMod x M LMHom M y M LMHom M z M LMHom M x + A y + A z = x + M f y + M f z
47 17 19 46 3eqtr4d M LMod x M LMHom M y M LMHom M z M LMHom M x + A y + A z = x + A y + A z
48 id M LMod M LMod
49 eqidd M LMod Scalar M = Scalar M
50 eqid 0 M = 0 M
51 eqid Scalar M = Scalar M
52 50 30 51 51 0lmhm M LMod M LMod Scalar M = Scalar M Base M × 0 M M LMHom M
53 48 48 49 52 syl3anc M LMod Base M × 0 M M LMHom M
54 1 2 6 7 mendplusg Base M × 0 M M LMHom M x M LMHom M Base M × 0 M + A x = Base M × 0 M + M f x
55 53 54 sylan M LMod x M LMHom M Base M × 0 M + A x = Base M × 0 M + M f x
56 31 34 sylibr x M LMHom M x Base M Base M
57 30 6 50 mndvlid M Mnd x Base M Base M Base M × 0 M + M f x = x
58 28 56 57 syl2an M LMod x M LMHom M Base M × 0 M + M f x = x
59 55 58 eqtrd M LMod x M LMHom M Base M × 0 M + A x = x
60 eqid inv g M = inv g M
61 60 invlmhm M LMod inv g M M LMHom M
62 lmhmco inv g M M LMHom M x M LMHom M inv g M x M LMHom M
63 61 62 sylan M LMod x M LMHom M inv g M x M LMHom M
64 1 2 6 7 mendplusg inv g M x M LMHom M x M LMHom M inv g M x + A x = inv g M x + M f x
65 63 64 sylancom M LMod x M LMHom M inv g M x + A x = inv g M x + M f x
66 30 6 60 50 grpvlinv M Grp x Base M Base M inv g M x + M f x = Base M × 0 M
67 27 56 66 syl2an M LMod x M LMHom M inv g M x + M f x = Base M × 0 M
68 65 67 eqtrd M LMod x M LMHom M inv g M x + A x = Base M × 0 M
69 3 4 11 47 53 59 63 68 isgrpd M LMod A Grp
70 eqid A = A
71 1 2 70 mendmulr x M LMHom M y M LMHom M x A y = x y
72 lmhmco x M LMHom M y M LMHom M x y M LMHom M
73 71 72 eqeltrd x M LMHom M y M LMHom M x A y M LMHom M
74 73 3adant1 M LMod x M LMHom M y M LMHom M x A y M LMHom M
75 coass x y z = x y z
76 12 13 71 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x A y = x y
77 76 oveq1d M LMod x M LMHom M y M LMHom M z M LMHom M x A y A z = x y A z
78 12 13 72 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x y M LMHom M
79 1 2 70 mendmulr x y M LMHom M z M LMHom M x y A z = x y z
80 78 15 79 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x y A z = x y z
81 77 80 eqtrd M LMod x M LMHom M y M LMHom M z M LMHom M x A y A z = x y z
82 1 2 70 mendmulr y M LMHom M z M LMHom M y A z = y z
83 13 15 82 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M y A z = y z
84 83 oveq2d M LMod x M LMHom M y M LMHom M z M LMHom M x A y A z = x A y z
85 lmhmco y M LMHom M z M LMHom M y z M LMHom M
86 13 15 85 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M y z M LMHom M
87 1 2 70 mendmulr x M LMHom M y z M LMHom M x A y z = x y z
88 12 86 87 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x A y z = x y z
89 84 88 eqtrd M LMod x M LMHom M y M LMHom M z M LMHom M x A y A z = x y z
90 75 81 89 3eqtr4a M LMod x M LMHom M y M LMHom M z M LMHom M x A y A z = x A y A z
91 1 2 70 mendmulr x M LMHom M y + M f z M LMHom M x A y + M f z = x y + M f z
92 12 21 91 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x A y + M f z = x y + M f z
93 25 oveq2d M LMod x M LMHom M y M LMHom M z M LMHom M x A y + A z = x A y + M f z
94 lmhmco x M LMHom M z M LMHom M x z M LMHom M
95 12 15 94 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x z M LMHom M
96 1 2 6 7 mendplusg x y M LMHom M x z M LMHom M x y + A x z = x y + M f x z
97 78 95 96 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x y + A x z = x y + M f x z
98 1 2 70 mendmulr x M LMHom M z M LMHom M x A z = x z
99 12 15 98 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x A z = x z
100 76 99 oveq12d M LMod x M LMHom M y M LMHom M z M LMHom M x A y + A x A z = x y + A x z
101 lmghm x M LMHom M x M GrpHom M
102 ghmmhm x M GrpHom M x M MndHom M
103 12 101 102 3syl M LMod x M LMHom M y M LMHom M z M LMHom M x M MndHom M
104 30 6 6 mhmvlin x M MndHom M y Base M Base M z Base M Base M x y + M f z = x y + M f x z
105 103 39 43 104 syl3anc M LMod x M LMHom M y M LMHom M z M LMHom M x y + M f z = x y + M f x z
106 97 100 105 3eqtr4d M LMod x M LMHom M y M LMHom M z M LMHom M x A y + A x A z = x y + M f z
107 92 93 106 3eqtr4d M LMod x M LMHom M y M LMHom M z M LMHom M x A y + A z = x A y + A x A z
108 1 2 70 mendmulr x + M f y M LMHom M z M LMHom M x + M f y A z = x + M f y z
109 14 15 108 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x + M f y A z = x + M f y z
110 18 oveq1d M LMod x M LMHom M y M LMHom M z M LMHom M x + A y A z = x + M f y A z
111 1 2 6 7 mendplusg x z M LMHom M y z M LMHom M x z + A y z = x z + M f y z
112 95 86 111 syl2anc M LMod x M LMHom M y M LMHom M z M LMHom M x z + A y z = x z + M f y z
113 99 83 oveq12d M LMod x M LMHom M y M LMHom M z M LMHom M x A z + A y A z = x z + A y z
114 ffn x : Base M Base M x Fn Base M
115 12 31 114 3syl M LMod x M LMHom M y M LMHom M z M LMHom M x Fn Base M
116 ffn y : Base M Base M y Fn Base M
117 13 36 116 3syl M LMod x M LMHom M y M LMHom M z M LMHom M y Fn Base M
118 33 a1i M LMod x M LMHom M y M LMHom M z M LMHom M Base M V
119 inidm Base M Base M = Base M
120 115 117 41 118 118 118 119 ofco M LMod x M LMHom M y M LMHom M z M LMHom M x + M f y z = x z + M f y z
121 112 113 120 3eqtr4d M LMod x M LMHom M y M LMHom M z M LMHom M x A z + A y A z = x + M f y z
122 109 110 121 3eqtr4d M LMod x M LMHom M y M LMHom M z M LMHom M x + A y A z = x A z + A y A z
123 30 idlmhm M LMod I Base M M LMHom M
124 1 2 70 mendmulr I Base M M LMHom M x M LMHom M I Base M A x = I Base M x
125 123 124 sylan M LMod x M LMHom M I Base M A x = I Base M x
126 31 adantl M LMod x M LMHom M x : Base M Base M
127 fcoi2 x : Base M Base M I Base M x = x
128 126 127 syl M LMod x M LMHom M I Base M x = x
129 125 128 eqtrd M LMod x M LMHom M I Base M A x = x
130 id x M LMHom M x M LMHom M
131 1 2 70 mendmulr x M LMHom M I Base M M LMHom M x A I Base M = x I Base M
132 130 123 131 syl2anr M LMod x M LMHom M x A I Base M = x I Base M
133 fcoi1 x : Base M Base M x I Base M = x
134 126 133 syl M LMod x M LMHom M x I Base M = x
135 132 134 eqtrd M LMod x M LMHom M x A I Base M = x
136 3 4 5 69 74 90 107 122 123 129 135 isringd M LMod A Ring