Metamath Proof Explorer


Theorem lmhmplusg

Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypothesis lmhmplusg.p +˙=+N
Assertion lmhmplusg FMLMHomNGMLMHomNF+˙fGMLMHomN

Proof

Step Hyp Ref Expression
1 lmhmplusg.p +˙=+N
2 eqid BaseM=BaseM
3 eqid M=M
4 eqid N=N
5 eqid ScalarM=ScalarM
6 eqid ScalarN=ScalarN
7 eqid BaseScalarM=BaseScalarM
8 lmhmlmod1 FMLMHomNMLMod
9 8 adantr FMLMHomNGMLMHomNMLMod
10 lmhmlmod2 FMLMHomNNLMod
11 10 adantr FMLMHomNGMLMHomNNLMod
12 5 6 lmhmsca FMLMHomNScalarN=ScalarM
13 12 adantr FMLMHomNGMLMHomNScalarN=ScalarM
14 lmodabl NLModNAbel
15 11 14 syl FMLMHomNGMLMHomNNAbel
16 lmghm FMLMHomNFMGrpHomN
17 16 adantr FMLMHomNGMLMHomNFMGrpHomN
18 lmghm GMLMHomNGMGrpHomN
19 18 adantl FMLMHomNGMLMHomNGMGrpHomN
20 1 ghmplusg NAbelFMGrpHomNGMGrpHomNF+˙fGMGrpHomN
21 15 17 19 20 syl3anc FMLMHomNGMLMHomNF+˙fGMGrpHomN
22 simpll FMLMHomNGMLMHomNxBaseScalarMyBaseMFMLMHomN
23 simprl FMLMHomNGMLMHomNxBaseScalarMyBaseMxBaseScalarM
24 simprr FMLMHomNGMLMHomNxBaseScalarMyBaseMyBaseM
25 5 7 2 3 4 lmhmlin FMLMHomNxBaseScalarMyBaseMFxMy=xNFy
26 22 23 24 25 syl3anc FMLMHomNGMLMHomNxBaseScalarMyBaseMFxMy=xNFy
27 simplr FMLMHomNGMLMHomNxBaseScalarMyBaseMGMLMHomN
28 5 7 2 3 4 lmhmlin GMLMHomNxBaseScalarMyBaseMGxMy=xNGy
29 27 23 24 28 syl3anc FMLMHomNGMLMHomNxBaseScalarMyBaseMGxMy=xNGy
30 26 29 oveq12d FMLMHomNGMLMHomNxBaseScalarMyBaseMFxMy+˙GxMy=xNFy+˙xNGy
31 10 ad2antrr FMLMHomNGMLMHomNxBaseScalarMyBaseMNLMod
32 12 fveq2d FMLMHomNBaseScalarN=BaseScalarM
33 32 ad2antrr FMLMHomNGMLMHomNxBaseScalarMyBaseMBaseScalarN=BaseScalarM
34 23 33 eleqtrrd FMLMHomNGMLMHomNxBaseScalarMyBaseMxBaseScalarN
35 eqid BaseN=BaseN
36 2 35 lmhmf FMLMHomNF:BaseMBaseN
37 36 ad2antrr FMLMHomNGMLMHomNxBaseScalarMyBaseMF:BaseMBaseN
38 37 24 ffvelcdmd FMLMHomNGMLMHomNxBaseScalarMyBaseMFyBaseN
39 2 35 lmhmf GMLMHomNG:BaseMBaseN
40 39 ad2antlr FMLMHomNGMLMHomNxBaseScalarMyBaseMG:BaseMBaseN
41 40 24 ffvelcdmd FMLMHomNGMLMHomNxBaseScalarMyBaseMGyBaseN
42 eqid BaseScalarN=BaseScalarN
43 35 1 6 4 42 lmodvsdi NLModxBaseScalarNFyBaseNGyBaseNxNFy+˙Gy=xNFy+˙xNGy
44 31 34 38 41 43 syl13anc FMLMHomNGMLMHomNxBaseScalarMyBaseMxNFy+˙Gy=xNFy+˙xNGy
45 30 44 eqtr4d FMLMHomNGMLMHomNxBaseScalarMyBaseMFxMy+˙GxMy=xNFy+˙Gy
46 37 ffnd FMLMHomNGMLMHomNxBaseScalarMyBaseMFFnBaseM
47 40 ffnd FMLMHomNGMLMHomNxBaseScalarMyBaseMGFnBaseM
48 fvexd FMLMHomNGMLMHomNxBaseScalarMyBaseMBaseMV
49 8 ad2antrr FMLMHomNGMLMHomNxBaseScalarMyBaseMMLMod
50 2 5 3 7 lmodvscl MLModxBaseScalarMyBaseMxMyBaseM
51 49 23 24 50 syl3anc FMLMHomNGMLMHomNxBaseScalarMyBaseMxMyBaseM
52 fnfvof FFnBaseMGFnBaseMBaseMVxMyBaseMF+˙fGxMy=FxMy+˙GxMy
53 46 47 48 51 52 syl22anc FMLMHomNGMLMHomNxBaseScalarMyBaseMF+˙fGxMy=FxMy+˙GxMy
54 fnfvof FFnBaseMGFnBaseMBaseMVyBaseMF+˙fGy=Fy+˙Gy
55 46 47 48 24 54 syl22anc FMLMHomNGMLMHomNxBaseScalarMyBaseMF+˙fGy=Fy+˙Gy
56 55 oveq2d FMLMHomNGMLMHomNxBaseScalarMyBaseMxNF+˙fGy=xNFy+˙Gy
57 45 53 56 3eqtr4d FMLMHomNGMLMHomNxBaseScalarMyBaseMF+˙fGxMy=xNF+˙fGy
58 2 3 4 5 6 7 9 11 13 21 57 islmhmd FMLMHomNGMLMHomNF+˙fGMLMHomN