Metamath Proof Explorer


Theorem ghmplusg

Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypothesis ghmplusg.p + ˙ = + N
Assertion ghmplusg N Abel F M GrpHom N G M GrpHom N F + ˙ f G M GrpHom N

Proof

Step Hyp Ref Expression
1 ghmplusg.p + ˙ = + N
2 eqid Base M = Base M
3 eqid Base N = Base N
4 eqid + M = + M
5 ghmgrp1 G M GrpHom N M Grp
6 5 3ad2ant3 N Abel F M GrpHom N G M GrpHom N M Grp
7 ghmgrp2 G M GrpHom N N Grp
8 7 3ad2ant3 N Abel F M GrpHom N G M GrpHom N N Grp
9 3 1 grpcl N Grp x Base N y Base N x + ˙ y Base N
10 9 3expb N Grp x Base N y Base N x + ˙ y Base N
11 8 10 sylan N Abel F M GrpHom N G M GrpHom N x Base N y Base N x + ˙ y Base N
12 2 3 ghmf F M GrpHom N F : Base M Base N
13 12 3ad2ant2 N Abel F M GrpHom N G M GrpHom N F : Base M Base N
14 2 3 ghmf G M GrpHom N G : Base M Base N
15 14 3ad2ant3 N Abel F M GrpHom N G M GrpHom N G : Base M Base N
16 fvexd N Abel F M GrpHom N G M GrpHom N Base M V
17 inidm Base M Base M = Base M
18 11 13 15 16 16 17 off N Abel F M GrpHom N G M GrpHom N F + ˙ f G : Base M Base N
19 2 4 1 ghmlin F M GrpHom N x Base M y Base M F x + M y = F x + ˙ F y
20 19 3expb F M GrpHom N x Base M y Base M F x + M y = F x + ˙ F y
21 20 3ad2antl2 N Abel F M GrpHom N G M GrpHom N x Base M y Base M F x + M y = F x + ˙ F y
22 2 4 1 ghmlin G M GrpHom N x Base M y Base M G x + M y = G x + ˙ G y
23 22 3expb G M GrpHom N x Base M y Base M G x + M y = G x + ˙ G y
24 23 3ad2antl3 N Abel F M GrpHom N G M GrpHom N x Base M y Base M G x + M y = G x + ˙ G y
25 21 24 oveq12d N Abel F M GrpHom N G M GrpHom N x Base M y Base M F x + M y + ˙ G x + M y = F x + ˙ F y + ˙ G x + ˙ G y
26 simpl1 N Abel F M GrpHom N G M GrpHom N x Base M y Base M N Abel
27 ablcmn N Abel N CMnd
28 26 27 syl N Abel F M GrpHom N G M GrpHom N x Base M y Base M N CMnd
29 13 ffvelrnda N Abel F M GrpHom N G M GrpHom N x Base M F x Base N
30 29 adantrr N Abel F M GrpHom N G M GrpHom N x Base M y Base M F x Base N
31 13 ffvelrnda N Abel F M GrpHom N G M GrpHom N y Base M F y Base N
32 31 adantrl N Abel F M GrpHom N G M GrpHom N x Base M y Base M F y Base N
33 15 ffvelrnda N Abel F M GrpHom N G M GrpHom N x Base M G x Base N
34 33 adantrr N Abel F M GrpHom N G M GrpHom N x Base M y Base M G x Base N
35 15 ffvelrnda N Abel F M GrpHom N G M GrpHom N y Base M G y Base N
36 35 adantrl N Abel F M GrpHom N G M GrpHom N x Base M y Base M G y Base N
37 3 1 cmn4 N CMnd F x Base N F y Base N G x Base N G y Base N F x + ˙ F y + ˙ G x + ˙ G y = F x + ˙ G x + ˙ F y + ˙ G y
38 28 30 32 34 36 37 syl122anc N Abel F M GrpHom N G M GrpHom N x Base M y Base M F x + ˙ F y + ˙ G x + ˙ G y = F x + ˙ G x + ˙ F y + ˙ G y
39 25 38 eqtrd N Abel F M GrpHom N G M GrpHom N x Base M y Base M F x + M y + ˙ G x + M y = F x + ˙ G x + ˙ F y + ˙ G y
40 13 ffnd N Abel F M GrpHom N G M GrpHom N F Fn Base M
41 40 adantr N Abel F M GrpHom N G M GrpHom N x Base M y Base M F Fn Base M
42 15 ffnd N Abel F M GrpHom N G M GrpHom N G Fn Base M
43 42 adantr N Abel F M GrpHom N G M GrpHom N x Base M y Base M G Fn Base M
44 fvexd N Abel F M GrpHom N G M GrpHom N x Base M y Base M Base M V
45 2 4 grpcl M Grp x Base M y Base M x + M y Base M
46 45 3expb M Grp x Base M y Base M x + M y Base M
47 6 46 sylan N Abel F M GrpHom N G M GrpHom N x Base M y Base M x + M y Base M
48 fnfvof F Fn Base M G Fn Base M Base M V x + M y Base M F + ˙ f G x + M y = F x + M y + ˙ G x + M y
49 41 43 44 47 48 syl22anc N Abel F M GrpHom N G M GrpHom N x Base M y Base M F + ˙ f G x + M y = F x + M y + ˙ G x + M y
50 simprl N Abel F M GrpHom N G M GrpHom N x Base M y Base M x Base M
51 fnfvof F Fn Base M G Fn Base M Base M V x Base M F + ˙ f G x = F x + ˙ G x
52 41 43 44 50 51 syl22anc N Abel F M GrpHom N G M GrpHom N x Base M y Base M F + ˙ f G x = F x + ˙ G x
53 simprr N Abel F M GrpHom N G M GrpHom N x Base M y Base M y Base M
54 fnfvof F Fn Base M G Fn Base M Base M V y Base M F + ˙ f G y = F y + ˙ G y
55 41 43 44 53 54 syl22anc N Abel F M GrpHom N G M GrpHom N x Base M y Base M F + ˙ f G y = F y + ˙ G y
56 52 55 oveq12d N Abel F M GrpHom N G M GrpHom N x Base M y Base M F + ˙ f G x + ˙ F + ˙ f G y = F x + ˙ G x + ˙ F y + ˙ G y
57 39 49 56 3eqtr4d N Abel F M GrpHom N G M GrpHom N x Base M y Base M F + ˙ f G x + M y = F + ˙ f G x + ˙ F + ˙ f G y
58 2 3 4 1 6 8 18 57 isghmd N Abel F M GrpHom N G M GrpHom N F + ˙ f G M GrpHom N