Metamath Proof Explorer


Theorem grpvlinv

Description: Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses grpvlinv.b B=BaseG
grpvlinv.p +˙=+G
grpvlinv.n N=invgG
grpvlinv.z 0˙=0G
Assertion grpvlinv GGrpXBINX+˙fX=I×0˙

Proof

Step Hyp Ref Expression
1 grpvlinv.b B=BaseG
2 grpvlinv.p +˙=+G
3 grpvlinv.n N=invgG
4 grpvlinv.z 0˙=0G
5 elmapex XBIBVIV
6 5 simprd XBIIV
7 6 adantl GGrpXBIIV
8 elmapi XBIX:IB
9 8 adantl GGrpXBIX:IB
10 1 4 grpidcl GGrp0˙B
11 10 adantr GGrpXBI0˙B
12 1 3 grpinvf GGrpN:BB
13 12 adantr GGrpXBIN:BB
14 fcompt N:BBX:IBNX=xINXx
15 12 8 14 syl2an GGrpXBINX=xINXx
16 1 2 4 3 grplinv GGrpyBNy+˙y=0˙
17 16 adantlr GGrpXBIyBNy+˙y=0˙
18 7 9 11 13 15 17 caofinvl GGrpXBINX+˙fX=I×0˙