Metamath Proof Explorer


Theorem mendbas

Description: Base set of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015)

Ref Expression
Hypothesis mendbas.a A = MEndo M
Assertion mendbas M LMHom M = Base A

Proof

Step Hyp Ref Expression
1 mendbas.a A = MEndo M
2 ovex M LMHom M V
3 eqid Base ndx M LMHom M + ndx x M LMHom M , y M LMHom M x + M f y ndx x M LMHom M , y M LMHom M x y Scalar ndx Scalar M ndx x Base Scalar M , y M LMHom M Base M × x M f y = Base ndx M LMHom M + ndx x M LMHom M , y M LMHom M x + M f y ndx x M LMHom M , y M LMHom M x y Scalar ndx Scalar M ndx x Base Scalar M , y M LMHom M Base M × x M f y
4 3 algbase M LMHom M V M LMHom M = Base Base ndx M LMHom M + ndx x M LMHom M , y M LMHom M x + M f y ndx x M LMHom M , y M LMHom M x y Scalar ndx Scalar M ndx x Base Scalar M , y M LMHom M Base M × x M f y
5 2 4 mp1i M V M LMHom M = Base Base ndx M LMHom M + ndx x M LMHom M , y M LMHom M x + M f y ndx x M LMHom M , y M LMHom M x y Scalar ndx Scalar M ndx x Base Scalar M , y M LMHom M Base M × x M f y
6 eqid M LMHom M = M LMHom M
7 eqid x M LMHom M , y M LMHom M x + M f y = x M LMHom M , y M LMHom M x + M f y
8 eqid x M LMHom M , y M LMHom M x y = x M LMHom M , y M LMHom M x y
9 eqid Scalar M = Scalar M
10 eqid x Base Scalar M , y M LMHom M Base M × x M f y = x Base Scalar M , y M LMHom M Base M × x M f y
11 6 7 8 9 10 mendval M V MEndo M = Base ndx M LMHom M + ndx x M LMHom M , y M LMHom M x + M f y ndx x M LMHom M , y M LMHom M x y Scalar ndx Scalar M ndx x Base Scalar M , y M LMHom M Base M × x M f y
12 1 11 eqtrid M V A = Base ndx M LMHom M + ndx x M LMHom M , y M LMHom M x + M f y ndx x M LMHom M , y M LMHom M x y Scalar ndx Scalar M ndx x Base Scalar M , y M LMHom M Base M × x M f y
13 12 fveq2d M V Base A = Base Base ndx M LMHom M + ndx x M LMHom M , y M LMHom M x + M f y ndx x M LMHom M , y M LMHom M x y Scalar ndx Scalar M ndx x Base Scalar M , y M LMHom M Base M × x M f y
14 5 13 eqtr4d M V M LMHom M = Base A
15 base0 = Base
16 reldmlmhm Rel dom LMHom
17 16 ovprc1 ¬ M V M LMHom M =
18 fvprc ¬ M V MEndo M =
19 1 18 eqtrid ¬ M V A =
20 19 fveq2d ¬ M V Base A = Base
21 15 17 20 3eqtr4a ¬ M V M LMHom M = Base A
22 14 21 pm2.61i M LMHom M = Base A