Metamath Proof Explorer


Theorem invlmhm

Description: The negative function on a module is linear. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypothesis invlmhm.b I=invgM
Assertion invlmhm MLModIMLMHomM

Proof

Step Hyp Ref Expression
1 invlmhm.b I=invgM
2 eqid BaseM=BaseM
3 eqid M=M
4 eqid ScalarM=ScalarM
5 eqid BaseScalarM=BaseScalarM
6 id MLModMLMod
7 eqidd MLModScalarM=ScalarM
8 lmodabl MLModMAbel
9 2 1 invghm MAbelIMGrpHomM
10 8 9 sylib MLModIMGrpHomM
11 2 4 3 1 5 lmodvsinv2 MLModxBaseScalarMyBaseMxMIy=IxMy
12 11 eqcomd MLModxBaseScalarMyBaseMIxMy=xMIy
13 12 3expb MLModxBaseScalarMyBaseMIxMy=xMIy
14 2 3 3 4 4 5 6 6 7 10 13 islmhmd MLModIMLMHomM