Metamath Proof Explorer


Theorem mendvscafval

Description: Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015) (Proof shortened by AV, 3-Mar-2024)

Ref Expression
Hypotheses mendvscafval.a A = MEndo M
mendvscafval.v · ˙ = M
mendvscafval.b B = Base A
mendvscafval.s S = Scalar M
mendvscafval.k K = Base S
mendvscafval.e E = Base M
Assertion mendvscafval A = x K , y B E × x · ˙ f y

Proof

Step Hyp Ref Expression
1 mendvscafval.a A = MEndo M
2 mendvscafval.v · ˙ = M
3 mendvscafval.b B = Base A
4 mendvscafval.s S = Scalar M
5 mendvscafval.k K = Base S
6 mendvscafval.e E = Base M
7 1 fveq2i A = MEndo M
8 1 mendbas M LMHom M = Base A
9 3 8 eqtr4i B = M LMHom M
10 eqid x B , y B x + M f y = x B , y B x + M f y
11 eqid x B , y B x y = x B , y B x y
12 eqid B = B
13 6 xpeq1i E × x = Base M × x
14 eqid y = y
15 ofeq · ˙ = M f · ˙ = f M
16 2 15 ax-mp f · ˙ = f M
17 13 14 16 oveq123i E × x · ˙ f y = Base M × x M f y
18 5 12 17 mpoeq123i x K , y B E × x · ˙ f y = x Base S , y B Base M × x M f y
19 9 10 11 4 18 mendval M V MEndo M = Base ndx B + ndx x B , y B x + M f y ndx x B , y B x y Scalar ndx S ndx x K , y B E × x · ˙ f y
20 19 fveq2d M V MEndo M = Base ndx B + ndx x B , y B x + M f y ndx x B , y B x y Scalar ndx S ndx x K , y B E × x · ˙ f y
21 5 fvexi K V
22 3 fvexi B V
23 21 22 mpoex x K , y B E × x · ˙ f y V
24 eqid Base ndx B + ndx x B , y B x + M f y ndx x B , y B x y Scalar ndx S ndx x K , y B E × x · ˙ f y = Base ndx B + ndx x B , y B x + M f y ndx x B , y B x y Scalar ndx S ndx x K , y B E × x · ˙ f y
25 24 algvsca x K , y B E × x · ˙ f y V x K , y B E × x · ˙ f y = Base ndx B + ndx x B , y B x + M f y ndx x B , y B x y Scalar ndx S ndx x K , y B E × x · ˙ f y
26 23 25 mp1i M V x K , y B E × x · ˙ f y = Base ndx B + ndx x B , y B x + M f y ndx x B , y B x y Scalar ndx S ndx x K , y B E × x · ˙ f y
27 20 26 eqtr4d M V MEndo M = x K , y B E × x · ˙ f y
28 fvprc ¬ M V MEndo M =
29 28 fveq2d ¬ M V MEndo M =
30 df-vsca 𝑠 = Slot 6
31 30 str0 =
32 29 31 eqtr4di ¬ M V MEndo M =
33 fvprc ¬ M V Scalar M =
34 4 33 syl5eq ¬ M V S =
35 34 fveq2d ¬ M V Base S = Base
36 base0 = Base
37 35 5 36 3eqtr4g ¬ M V K =
38 37 orcd ¬ M V K = B =
39 0mpo0 K = B = x K , y B E × x · ˙ f y =
40 38 39 syl ¬ M V x K , y B E × x · ˙ f y =
41 32 40 eqtr4d ¬ M V MEndo M = x K , y B E × x · ˙ f y
42 27 41 pm2.61i MEndo M = x K , y B E × x · ˙ f y
43 7 42 eqtri A = x K , y B E × x · ˙ f y