Step |
Hyp |
Ref |
Expression |
1 |
|
mendassa.a |
|
2 |
|
mendassa.s |
|
3 |
1
|
mendbas |
|
4 |
3
|
a1i |
|
5 |
1 2
|
mendsca |
|
6 |
5
|
a1i |
|
7 |
|
eqidd |
|
8 |
|
eqidd |
|
9 |
|
eqidd |
|
10 |
1 2
|
mendlmod |
|
11 |
1
|
mendring |
|
12 |
11
|
adantr |
|
13 |
|
simpr |
|
14 |
|
simpr3 |
|
15 |
|
eqid |
|
16 |
15 15
|
lmhmf |
|
17 |
14 16
|
syl |
|
18 |
17
|
ffvelrnda |
|
19 |
17
|
feqmptd |
|
20 |
|
simpr1 |
|
21 |
|
simpr2 |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
1 22 3 2 23 15 24
|
mendvsca |
|
26 |
20 21 25
|
syl2anc |
|
27 |
|
fvexd |
|
28 |
|
simplr1 |
|
29 |
|
fvexd |
|
30 |
|
fconstmpt |
|
31 |
30
|
a1i |
|
32 |
15 15
|
lmhmf |
|
33 |
21 32
|
syl |
|
34 |
33
|
feqmptd |
|
35 |
27 28 29 31 34
|
offval2 |
|
36 |
26 35
|
eqtrd |
|
37 |
|
fveq2 |
|
38 |
37
|
oveq2d |
|
39 |
18 19 36 38
|
fmptco |
|
40 |
|
simplr1 |
|
41 |
|
fvexd |
|
42 |
|
fconstmpt |
|
43 |
42
|
a1i |
|
44 |
|
eqid |
|
45 |
1 3 44
|
mendmulr |
|
46 |
21 14 45
|
syl2anc |
|
47 |
|
fcompt |
|
48 |
33 17 47
|
syl2anc |
|
49 |
46 48
|
eqtrd |
|
50 |
27 40 41 43 49
|
offval2 |
|
51 |
39 50
|
eqtr4d |
|
52 |
10
|
adantr |
|
53 |
3 5 24 23
|
lmodvscl |
|
54 |
52 20 21 53
|
syl3anc |
|
55 |
1 3 44
|
mendmulr |
|
56 |
54 14 55
|
syl2anc |
|
57 |
12
|
adantr |
|
58 |
3 44
|
ringcl |
|
59 |
57 21 14 58
|
syl3anc |
|
60 |
1 22 3 2 23 15 24
|
mendvsca |
|
61 |
20 59 60
|
syl2anc |
|
62 |
51 56 61
|
3eqtr4d |
|
63 |
|
simplr2 |
|
64 |
2 23 15 22 22
|
lmhmlin |
|
65 |
63 40 18 64
|
syl3anc |
|
66 |
65
|
mpteq2dva |
|
67 |
|
simplll |
|
68 |
15 2 22 23
|
lmodvscl |
|
69 |
67 40 18 68
|
syl3anc |
|
70 |
1 22 3 2 23 15 24
|
mendvsca |
|
71 |
20 14 70
|
syl2anc |
|
72 |
|
fvexd |
|
73 |
27 40 72 43 19
|
offval2 |
|
74 |
71 73
|
eqtrd |
|
75 |
|
fveq2 |
|
76 |
69 74 34 75
|
fmptco |
|
77 |
66 76 50
|
3eqtr4d |
|
78 |
3 5 24 23
|
lmodvscl |
|
79 |
52 20 14 78
|
syl3anc |
|
80 |
1 3 44
|
mendmulr |
|
81 |
21 79 80
|
syl2anc |
|
82 |
77 81 61
|
3eqtr4d |
|
83 |
4 6 7 8 9 10 12 13 62 82
|
isassad |
|