Metamath Proof Explorer


Theorem mendsca

Description: The module endomorphism algebra has the same scalars as the underlying module. (Contributed by Stefan O'Rear, 2-Sep-2015) (Proof shortened by AV, 31-Oct-2024)

Ref Expression
Hypotheses mendsca.a A = MEndo M
mendsca.s S = Scalar M
Assertion mendsca S = Scalar A

Proof

Step Hyp Ref Expression
1 mendsca.a A = MEndo M
2 mendsca.s S = Scalar M
3 fvex Scalar M V
4 eqid Base ndx M LMHom M + ndx x M LMHom M , y M LMHom M x + M f y ndx x M LMHom M , y M LMHom M x y Scalar ndx Scalar M ndx x Base Scalar M , y M LMHom M Base M × x M f y = Base ndx M LMHom M + ndx x M LMHom M , y M LMHom M x + M f y ndx x M LMHom M , y M LMHom M x y Scalar ndx Scalar M ndx x Base Scalar M , y M LMHom M Base M × x M f y
5 4 algsca Scalar M V Scalar M = Scalar Base ndx M LMHom M + ndx x M LMHom M , y M LMHom M x + M f y ndx x M LMHom M , y M LMHom M x y Scalar ndx Scalar M ndx x Base Scalar M , y M LMHom M Base M × x M f y
6 3 5 mp1i M V Scalar M = Scalar Base ndx M LMHom M + ndx x M LMHom M , y M LMHom M x + M f y ndx x M LMHom M , y M LMHom M x y Scalar ndx Scalar M ndx x Base Scalar M , y M LMHom M Base M × x M f y
7 eqid M LMHom M = M LMHom M
8 eqid x M LMHom M , y M LMHom M x + M f y = x M LMHom M , y M LMHom M x + M f y
9 eqid x M LMHom M , y M LMHom M x y = x M LMHom M , y M LMHom M x y
10 eqid Scalar M = Scalar M
11 eqid x Base Scalar M , y M LMHom M Base M × x M f y = x Base Scalar M , y M LMHom M Base M × x M f y
12 7 8 9 10 11 mendval M V MEndo M = Base ndx M LMHom M + ndx x M LMHom M , y M LMHom M x + M f y ndx x M LMHom M , y M LMHom M x y Scalar ndx Scalar M ndx x Base Scalar M , y M LMHom M Base M × x M f y
13 12 fveq2d M V Scalar MEndo M = Scalar Base ndx M LMHom M + ndx x M LMHom M , y M LMHom M x + M f y ndx x M LMHom M , y M LMHom M x y Scalar ndx Scalar M ndx x Base Scalar M , y M LMHom M Base M × x M f y
14 6 13 eqtr4d M V Scalar M = Scalar MEndo M
15 scaid Scalar = Slot Scalar ndx
16 15 str0 = Scalar
17 16 eqcomi Scalar =
18 eqid MEndo M = MEndo M
19 17 18 fveqprc ¬ M V Scalar M = Scalar MEndo M
20 14 19 pm2.61i Scalar M = Scalar MEndo M
21 1 fveq2i Scalar A = Scalar MEndo M
22 20 2 21 3eqtr4i S = Scalar A