Step |
Hyp |
Ref |
Expression |
1 |
|
mendassa.a |
⊢ 𝐴 = ( MEndo ‘ 𝑀 ) |
2 |
|
mendassa.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
3 |
1
|
mendbas |
⊢ ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 ) |
4 |
3
|
a1i |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 ) ) |
5 |
1 2
|
mendsca |
⊢ 𝑆 = ( Scalar ‘ 𝐴 ) |
6 |
5
|
a1i |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝑆 = ( Scalar ‘ 𝐴 ) ) |
7 |
|
eqidd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
8 |
|
eqidd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) ) |
9 |
|
eqidd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) ) |
10 |
1 2
|
mendlmod |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝐴 ∈ LMod ) |
11 |
1
|
mendring |
⊢ ( 𝑀 ∈ LMod → 𝐴 ∈ Ring ) |
12 |
11
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝐴 ∈ Ring ) |
13 |
|
simpr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝑆 ∈ CRing ) |
14 |
|
simpr3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
16 |
15 15
|
lmhmf |
⊢ ( 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
17 |
14 16
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
18 |
17
|
ffvelrnda |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑧 ‘ 𝑣 ) ∈ ( Base ‘ 𝑀 ) ) |
19 |
17
|
feqmptd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑧 = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑧 ‘ 𝑣 ) ) ) |
20 |
|
simpr1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
21 |
|
simpr2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) |
22 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
24 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) |
25 |
1 22 3 2 23 15 24
|
mendvsca |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
26 |
20 21 25
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
27 |
|
fvexd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( Base ‘ 𝑀 ) ∈ V ) |
28 |
|
simplr1 |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝑀 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
29 |
|
fvexd |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ‘ 𝑤 ) ∈ V ) |
30 |
|
fconstmpt |
⊢ ( ( Base ‘ 𝑀 ) × { 𝑥 } ) = ( 𝑤 ∈ ( Base ‘ 𝑀 ) ↦ 𝑥 ) |
31 |
30
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( Base ‘ 𝑀 ) × { 𝑥 } ) = ( 𝑤 ∈ ( Base ‘ 𝑀 ) ↦ 𝑥 ) ) |
32 |
15 15
|
lmhmf |
⊢ ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) → 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
33 |
21 32
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) |
34 |
33
|
feqmptd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝑦 = ( 𝑤 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦 ‘ 𝑤 ) ) ) |
35 |
27 28 29 31 34
|
offval2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) = ( 𝑤 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ‘ 𝑤 ) ) ) ) |
36 |
26 35
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) = ( 𝑤 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ‘ 𝑤 ) ) ) ) |
37 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑧 ‘ 𝑣 ) → ( 𝑦 ‘ 𝑤 ) = ( 𝑦 ‘ ( 𝑧 ‘ 𝑣 ) ) ) |
38 |
37
|
oveq2d |
⊢ ( 𝑤 = ( 𝑧 ‘ 𝑣 ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ‘ 𝑤 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ‘ ( 𝑧 ‘ 𝑣 ) ) ) ) |
39 |
18 19 36 38
|
fmptco |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∘ 𝑧 ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ‘ ( 𝑧 ‘ 𝑣 ) ) ) ) ) |
40 |
|
simplr1 |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
41 |
|
fvexd |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ‘ ( 𝑧 ‘ 𝑣 ) ) ∈ V ) |
42 |
|
fconstmpt |
⊢ ( ( Base ‘ 𝑀 ) × { 𝑥 } ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ 𝑥 ) |
43 |
42
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( Base ‘ 𝑀 ) × { 𝑥 } ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ 𝑥 ) ) |
44 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
45 |
1 3 44
|
mendmulr |
⊢ ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
46 |
21 14 45
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ∘ 𝑧 ) ) |
47 |
|
fcompt |
⊢ ( ( 𝑦 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ∧ 𝑧 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑀 ) ) → ( 𝑦 ∘ 𝑧 ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦 ‘ ( 𝑧 ‘ 𝑣 ) ) ) ) |
48 |
33 17 47
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ∘ 𝑧 ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦 ‘ ( 𝑧 ‘ 𝑣 ) ) ) ) |
49 |
46 48
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦 ‘ ( 𝑧 ‘ 𝑣 ) ) ) ) |
50 |
27 40 41 43 49
|
offval2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ‘ ( 𝑧 ‘ 𝑣 ) ) ) ) ) |
51 |
39 50
|
eqtr4d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∘ 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) ) |
52 |
10
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝐴 ∈ LMod ) |
53 |
3 5 24 23
|
lmodvscl |
⊢ ( ( 𝐴 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
54 |
52 20 21 53
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
55 |
1 3 44
|
mendmulr |
⊢ ( ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∘ 𝑧 ) ) |
56 |
54 14 55
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ∘ 𝑧 ) ) |
57 |
12
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → 𝐴 ∈ Ring ) |
58 |
3 44
|
ringcl |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
59 |
57 21 14 58
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
60 |
1 22 3 2 23 15 24
|
mendvsca |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) ) |
61 |
20 59 60
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) ) |
62 |
51 56 61
|
3eqtr4d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑦 ) ( .r ‘ 𝐴 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) ) |
63 |
|
simplr2 |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ) |
64 |
2 23 15 22 22
|
lmhmlin |
⊢ ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝑧 ‘ 𝑣 ) ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑣 ) ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ‘ ( 𝑧 ‘ 𝑣 ) ) ) ) |
65 |
63 40 18 64
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑣 ) ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ‘ ( 𝑧 ‘ 𝑣 ) ) ) ) |
66 |
65
|
mpteq2dva |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑣 ) ) ) ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ‘ ( 𝑧 ‘ 𝑣 ) ) ) ) ) |
67 |
|
simplll |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → 𝑀 ∈ LMod ) |
68 |
15 2 22 23
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝑧 ‘ 𝑣 ) ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑣 ) ) ∈ ( Base ‘ 𝑀 ) ) |
69 |
67 40 18 68
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑣 ) ) ∈ ( Base ‘ 𝑀 ) ) |
70 |
1 22 3 2 23 15 24
|
mendvsca |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
71 |
20 14 70
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
72 |
|
fvexd |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑧 ‘ 𝑣 ) ∈ V ) |
73 |
27 40 72 43 19
|
offval2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑧 ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑣 ) ) ) ) |
74 |
71 73
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑣 ) ) ) ) |
75 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑣 ) ) → ( 𝑦 ‘ 𝑤 ) = ( 𝑦 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑣 ) ) ) ) |
76 |
69 74 34 75
|
fmptco |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ∘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( 𝑣 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑦 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) ( 𝑧 ‘ 𝑣 ) ) ) ) ) |
77 |
66 76 50
|
3eqtr4d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ∘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) ) |
78 |
3 5 24 23
|
lmodvscl |
⊢ ( ( 𝐴 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
79 |
52 20 14 78
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) |
80 |
1 3 44
|
mendmulr |
⊢ ( ( 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ∈ ( 𝑀 LMHom 𝑀 ) ) → ( 𝑦 ( .r ‘ 𝐴 ) ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( 𝑦 ∘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) ) |
81 |
21 79 80
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( .r ‘ 𝐴 ) ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( 𝑦 ∘ ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) ) |
82 |
77 81 61
|
3eqtr4d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝑀 LMHom 𝑀 ) ∧ 𝑧 ∈ ( 𝑀 LMHom 𝑀 ) ) ) → ( 𝑦 ( .r ‘ 𝐴 ) ( 𝑥 ( ·𝑠 ‘ 𝐴 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝐴 ) ( 𝑦 ( .r ‘ 𝐴 ) 𝑧 ) ) ) |
83 |
4 6 7 8 9 10 12 13 62 82
|
isassad |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ CRing ) → 𝐴 ∈ AssAlg ) |