Step |
Hyp |
Ref |
Expression |
1 |
|
mendassa.a |
|- A = ( MEndo ` M ) |
2 |
|
mendassa.s |
|- S = ( Scalar ` M ) |
3 |
1
|
mendbas |
|- ( M LMHom M ) = ( Base ` A ) |
4 |
3
|
a1i |
|- ( ( M e. LMod /\ S e. CRing ) -> ( M LMHom M ) = ( Base ` A ) ) |
5 |
1 2
|
mendsca |
|- S = ( Scalar ` A ) |
6 |
5
|
a1i |
|- ( ( M e. LMod /\ S e. CRing ) -> S = ( Scalar ` A ) ) |
7 |
|
eqidd |
|- ( ( M e. LMod /\ S e. CRing ) -> ( Base ` S ) = ( Base ` S ) ) |
8 |
|
eqidd |
|- ( ( M e. LMod /\ S e. CRing ) -> ( .s ` A ) = ( .s ` A ) ) |
9 |
|
eqidd |
|- ( ( M e. LMod /\ S e. CRing ) -> ( .r ` A ) = ( .r ` A ) ) |
10 |
1 2
|
mendlmod |
|- ( ( M e. LMod /\ S e. CRing ) -> A e. LMod ) |
11 |
1
|
mendring |
|- ( M e. LMod -> A e. Ring ) |
12 |
11
|
adantr |
|- ( ( M e. LMod /\ S e. CRing ) -> A e. Ring ) |
13 |
|
simpr |
|- ( ( M e. LMod /\ S e. CRing ) -> S e. CRing ) |
14 |
|
simpr3 |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> z e. ( M LMHom M ) ) |
15 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
16 |
15 15
|
lmhmf |
|- ( z e. ( M LMHom M ) -> z : ( Base ` M ) --> ( Base ` M ) ) |
17 |
14 16
|
syl |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> z : ( Base ` M ) --> ( Base ` M ) ) |
18 |
17
|
ffvelrnda |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> ( z ` v ) e. ( Base ` M ) ) |
19 |
17
|
feqmptd |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> z = ( v e. ( Base ` M ) |-> ( z ` v ) ) ) |
20 |
|
simpr1 |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> x e. ( Base ` S ) ) |
21 |
|
simpr2 |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> y e. ( M LMHom M ) ) |
22 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
23 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
24 |
|
eqid |
|- ( .s ` A ) = ( .s ` A ) |
25 |
1 22 3 2 23 15 24
|
mendvsca |
|- ( ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) ) -> ( x ( .s ` A ) y ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) |
26 |
20 21 25
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) y ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) |
27 |
|
fvexd |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( Base ` M ) e. _V ) |
28 |
|
simplr1 |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ w e. ( Base ` M ) ) -> x e. ( Base ` S ) ) |
29 |
|
fvexd |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ w e. ( Base ` M ) ) -> ( y ` w ) e. _V ) |
30 |
|
fconstmpt |
|- ( ( Base ` M ) X. { x } ) = ( w e. ( Base ` M ) |-> x ) |
31 |
30
|
a1i |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( Base ` M ) X. { x } ) = ( w e. ( Base ` M ) |-> x ) ) |
32 |
15 15
|
lmhmf |
|- ( y e. ( M LMHom M ) -> y : ( Base ` M ) --> ( Base ` M ) ) |
33 |
21 32
|
syl |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> y : ( Base ` M ) --> ( Base ` M ) ) |
34 |
33
|
feqmptd |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> y = ( w e. ( Base ` M ) |-> ( y ` w ) ) ) |
35 |
27 28 29 31 34
|
offval2 |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) = ( w e. ( Base ` M ) |-> ( x ( .s ` M ) ( y ` w ) ) ) ) |
36 |
26 35
|
eqtrd |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) y ) = ( w e. ( Base ` M ) |-> ( x ( .s ` M ) ( y ` w ) ) ) ) |
37 |
|
fveq2 |
|- ( w = ( z ` v ) -> ( y ` w ) = ( y ` ( z ` v ) ) ) |
38 |
37
|
oveq2d |
|- ( w = ( z ` v ) -> ( x ( .s ` M ) ( y ` w ) ) = ( x ( .s ` M ) ( y ` ( z ` v ) ) ) ) |
39 |
18 19 36 38
|
fmptco |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( x ( .s ` A ) y ) o. z ) = ( v e. ( Base ` M ) |-> ( x ( .s ` M ) ( y ` ( z ` v ) ) ) ) ) |
40 |
|
simplr1 |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> x e. ( Base ` S ) ) |
41 |
|
fvexd |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> ( y ` ( z ` v ) ) e. _V ) |
42 |
|
fconstmpt |
|- ( ( Base ` M ) X. { x } ) = ( v e. ( Base ` M ) |-> x ) |
43 |
42
|
a1i |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( Base ` M ) X. { x } ) = ( v e. ( Base ` M ) |-> x ) ) |
44 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
45 |
1 3 44
|
mendmulr |
|- ( ( y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) -> ( y ( .r ` A ) z ) = ( y o. z ) ) |
46 |
21 14 45
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y ( .r ` A ) z ) = ( y o. z ) ) |
47 |
|
fcompt |
|- ( ( y : ( Base ` M ) --> ( Base ` M ) /\ z : ( Base ` M ) --> ( Base ` M ) ) -> ( y o. z ) = ( v e. ( Base ` M ) |-> ( y ` ( z ` v ) ) ) ) |
48 |
33 17 47
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y o. z ) = ( v e. ( Base ` M ) |-> ( y ` ( z ` v ) ) ) ) |
49 |
46 48
|
eqtrd |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y ( .r ` A ) z ) = ( v e. ( Base ` M ) |-> ( y ` ( z ` v ) ) ) ) |
50 |
27 40 41 43 49
|
offval2 |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) ( y ( .r ` A ) z ) ) = ( v e. ( Base ` M ) |-> ( x ( .s ` M ) ( y ` ( z ` v ) ) ) ) ) |
51 |
39 50
|
eqtr4d |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( x ( .s ` A ) y ) o. z ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) ( y ( .r ` A ) z ) ) ) |
52 |
10
|
adantr |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> A e. LMod ) |
53 |
3 5 24 23
|
lmodvscl |
|- ( ( A e. LMod /\ x e. ( Base ` S ) /\ y e. ( M LMHom M ) ) -> ( x ( .s ` A ) y ) e. ( M LMHom M ) ) |
54 |
52 20 21 53
|
syl3anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) y ) e. ( M LMHom M ) ) |
55 |
1 3 44
|
mendmulr |
|- ( ( ( x ( .s ` A ) y ) e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) -> ( ( x ( .s ` A ) y ) ( .r ` A ) z ) = ( ( x ( .s ` A ) y ) o. z ) ) |
56 |
54 14 55
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( x ( .s ` A ) y ) ( .r ` A ) z ) = ( ( x ( .s ` A ) y ) o. z ) ) |
57 |
12
|
adantr |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> A e. Ring ) |
58 |
3 44
|
ringcl |
|- ( ( A e. Ring /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) -> ( y ( .r ` A ) z ) e. ( M LMHom M ) ) |
59 |
57 21 14 58
|
syl3anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y ( .r ` A ) z ) e. ( M LMHom M ) ) |
60 |
1 22 3 2 23 15 24
|
mendvsca |
|- ( ( x e. ( Base ` S ) /\ ( y ( .r ` A ) z ) e. ( M LMHom M ) ) -> ( x ( .s ` A ) ( y ( .r ` A ) z ) ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) ( y ( .r ` A ) z ) ) ) |
61 |
20 59 60
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) ( y ( .r ` A ) z ) ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) ( y ( .r ` A ) z ) ) ) |
62 |
51 56 61
|
3eqtr4d |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( x ( .s ` A ) y ) ( .r ` A ) z ) = ( x ( .s ` A ) ( y ( .r ` A ) z ) ) ) |
63 |
|
simplr2 |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> y e. ( M LMHom M ) ) |
64 |
2 23 15 22 22
|
lmhmlin |
|- ( ( y e. ( M LMHom M ) /\ x e. ( Base ` S ) /\ ( z ` v ) e. ( Base ` M ) ) -> ( y ` ( x ( .s ` M ) ( z ` v ) ) ) = ( x ( .s ` M ) ( y ` ( z ` v ) ) ) ) |
65 |
63 40 18 64
|
syl3anc |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> ( y ` ( x ( .s ` M ) ( z ` v ) ) ) = ( x ( .s ` M ) ( y ` ( z ` v ) ) ) ) |
66 |
65
|
mpteq2dva |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( v e. ( Base ` M ) |-> ( y ` ( x ( .s ` M ) ( z ` v ) ) ) ) = ( v e. ( Base ` M ) |-> ( x ( .s ` M ) ( y ` ( z ` v ) ) ) ) ) |
67 |
|
simplll |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> M e. LMod ) |
68 |
15 2 22 23
|
lmodvscl |
|- ( ( M e. LMod /\ x e. ( Base ` S ) /\ ( z ` v ) e. ( Base ` M ) ) -> ( x ( .s ` M ) ( z ` v ) ) e. ( Base ` M ) ) |
69 |
67 40 18 68
|
syl3anc |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> ( x ( .s ` M ) ( z ` v ) ) e. ( Base ` M ) ) |
70 |
1 22 3 2 23 15 24
|
mendvsca |
|- ( ( x e. ( Base ` S ) /\ z e. ( M LMHom M ) ) -> ( x ( .s ` A ) z ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) z ) ) |
71 |
20 14 70
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) z ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) z ) ) |
72 |
|
fvexd |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> ( z ` v ) e. _V ) |
73 |
27 40 72 43 19
|
offval2 |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) z ) = ( v e. ( Base ` M ) |-> ( x ( .s ` M ) ( z ` v ) ) ) ) |
74 |
71 73
|
eqtrd |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) z ) = ( v e. ( Base ` M ) |-> ( x ( .s ` M ) ( z ` v ) ) ) ) |
75 |
|
fveq2 |
|- ( w = ( x ( .s ` M ) ( z ` v ) ) -> ( y ` w ) = ( y ` ( x ( .s ` M ) ( z ` v ) ) ) ) |
76 |
69 74 34 75
|
fmptco |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y o. ( x ( .s ` A ) z ) ) = ( v e. ( Base ` M ) |-> ( y ` ( x ( .s ` M ) ( z ` v ) ) ) ) ) |
77 |
66 76 50
|
3eqtr4d |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y o. ( x ( .s ` A ) z ) ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) ( y ( .r ` A ) z ) ) ) |
78 |
3 5 24 23
|
lmodvscl |
|- ( ( A e. LMod /\ x e. ( Base ` S ) /\ z e. ( M LMHom M ) ) -> ( x ( .s ` A ) z ) e. ( M LMHom M ) ) |
79 |
52 20 14 78
|
syl3anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) z ) e. ( M LMHom M ) ) |
80 |
1 3 44
|
mendmulr |
|- ( ( y e. ( M LMHom M ) /\ ( x ( .s ` A ) z ) e. ( M LMHom M ) ) -> ( y ( .r ` A ) ( x ( .s ` A ) z ) ) = ( y o. ( x ( .s ` A ) z ) ) ) |
81 |
21 79 80
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y ( .r ` A ) ( x ( .s ` A ) z ) ) = ( y o. ( x ( .s ` A ) z ) ) ) |
82 |
77 81 61
|
3eqtr4d |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y ( .r ` A ) ( x ( .s ` A ) z ) ) = ( x ( .s ` A ) ( y ( .r ` A ) z ) ) ) |
83 |
4 6 7 8 9 10 12 13 62 82
|
isassad |
|- ( ( M e. LMod /\ S e. CRing ) -> A e. AssAlg ) |