Step |
Hyp |
Ref |
Expression |
1 |
|
mendassa.a |
|- A = ( MEndo ` M ) |
2 |
|
mendassa.s |
|- S = ( Scalar ` M ) |
3 |
1
|
mendbas |
|- ( M LMHom M ) = ( Base ` A ) |
4 |
3
|
a1i |
|- ( ( M e. LMod /\ S e. CRing ) -> ( M LMHom M ) = ( Base ` A ) ) |
5 |
1 2
|
mendsca |
|- S = ( Scalar ` A ) |
6 |
5
|
a1i |
|- ( ( M e. LMod /\ S e. CRing ) -> S = ( Scalar ` A ) ) |
7 |
|
eqidd |
|- ( ( M e. LMod /\ S e. CRing ) -> ( Base ` S ) = ( Base ` S ) ) |
8 |
|
eqidd |
|- ( ( M e. LMod /\ S e. CRing ) -> ( .s ` A ) = ( .s ` A ) ) |
9 |
|
eqidd |
|- ( ( M e. LMod /\ S e. CRing ) -> ( .r ` A ) = ( .r ` A ) ) |
10 |
1 2
|
mendlmod |
|- ( ( M e. LMod /\ S e. CRing ) -> A e. LMod ) |
11 |
1
|
mendring |
|- ( M e. LMod -> A e. Ring ) |
12 |
11
|
adantr |
|- ( ( M e. LMod /\ S e. CRing ) -> A e. Ring ) |
13 |
|
simpr3 |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> z e. ( M LMHom M ) ) |
14 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
15 |
14 14
|
lmhmf |
|- ( z e. ( M LMHom M ) -> z : ( Base ` M ) --> ( Base ` M ) ) |
16 |
13 15
|
syl |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> z : ( Base ` M ) --> ( Base ` M ) ) |
17 |
16
|
ffvelcdmda |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> ( z ` v ) e. ( Base ` M ) ) |
18 |
16
|
feqmptd |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> z = ( v e. ( Base ` M ) |-> ( z ` v ) ) ) |
19 |
|
simpr1 |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> x e. ( Base ` S ) ) |
20 |
|
simpr2 |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> y e. ( M LMHom M ) ) |
21 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
22 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
23 |
|
eqid |
|- ( .s ` A ) = ( .s ` A ) |
24 |
1 21 3 2 22 14 23
|
mendvsca |
|- ( ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) ) -> ( x ( .s ` A ) y ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) |
25 |
19 20 24
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) y ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) ) |
26 |
|
fvexd |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( Base ` M ) e. _V ) |
27 |
|
simplr1 |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ w e. ( Base ` M ) ) -> x e. ( Base ` S ) ) |
28 |
|
fvexd |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ w e. ( Base ` M ) ) -> ( y ` w ) e. _V ) |
29 |
|
fconstmpt |
|- ( ( Base ` M ) X. { x } ) = ( w e. ( Base ` M ) |-> x ) |
30 |
29
|
a1i |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( Base ` M ) X. { x } ) = ( w e. ( Base ` M ) |-> x ) ) |
31 |
14 14
|
lmhmf |
|- ( y e. ( M LMHom M ) -> y : ( Base ` M ) --> ( Base ` M ) ) |
32 |
20 31
|
syl |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> y : ( Base ` M ) --> ( Base ` M ) ) |
33 |
32
|
feqmptd |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> y = ( w e. ( Base ` M ) |-> ( y ` w ) ) ) |
34 |
26 27 28 30 33
|
offval2 |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) y ) = ( w e. ( Base ` M ) |-> ( x ( .s ` M ) ( y ` w ) ) ) ) |
35 |
25 34
|
eqtrd |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) y ) = ( w e. ( Base ` M ) |-> ( x ( .s ` M ) ( y ` w ) ) ) ) |
36 |
|
fveq2 |
|- ( w = ( z ` v ) -> ( y ` w ) = ( y ` ( z ` v ) ) ) |
37 |
36
|
oveq2d |
|- ( w = ( z ` v ) -> ( x ( .s ` M ) ( y ` w ) ) = ( x ( .s ` M ) ( y ` ( z ` v ) ) ) ) |
38 |
17 18 35 37
|
fmptco |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( x ( .s ` A ) y ) o. z ) = ( v e. ( Base ` M ) |-> ( x ( .s ` M ) ( y ` ( z ` v ) ) ) ) ) |
39 |
|
simplr1 |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> x e. ( Base ` S ) ) |
40 |
|
fvexd |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> ( y ` ( z ` v ) ) e. _V ) |
41 |
|
fconstmpt |
|- ( ( Base ` M ) X. { x } ) = ( v e. ( Base ` M ) |-> x ) |
42 |
41
|
a1i |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( Base ` M ) X. { x } ) = ( v e. ( Base ` M ) |-> x ) ) |
43 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
44 |
1 3 43
|
mendmulr |
|- ( ( y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) -> ( y ( .r ` A ) z ) = ( y o. z ) ) |
45 |
20 13 44
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y ( .r ` A ) z ) = ( y o. z ) ) |
46 |
|
fcompt |
|- ( ( y : ( Base ` M ) --> ( Base ` M ) /\ z : ( Base ` M ) --> ( Base ` M ) ) -> ( y o. z ) = ( v e. ( Base ` M ) |-> ( y ` ( z ` v ) ) ) ) |
47 |
32 16 46
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y o. z ) = ( v e. ( Base ` M ) |-> ( y ` ( z ` v ) ) ) ) |
48 |
45 47
|
eqtrd |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y ( .r ` A ) z ) = ( v e. ( Base ` M ) |-> ( y ` ( z ` v ) ) ) ) |
49 |
26 39 40 42 48
|
offval2 |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) ( y ( .r ` A ) z ) ) = ( v e. ( Base ` M ) |-> ( x ( .s ` M ) ( y ` ( z ` v ) ) ) ) ) |
50 |
38 49
|
eqtr4d |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( x ( .s ` A ) y ) o. z ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) ( y ( .r ` A ) z ) ) ) |
51 |
10
|
adantr |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> A e. LMod ) |
52 |
3 5 23 22
|
lmodvscl |
|- ( ( A e. LMod /\ x e. ( Base ` S ) /\ y e. ( M LMHom M ) ) -> ( x ( .s ` A ) y ) e. ( M LMHom M ) ) |
53 |
51 19 20 52
|
syl3anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) y ) e. ( M LMHom M ) ) |
54 |
1 3 43
|
mendmulr |
|- ( ( ( x ( .s ` A ) y ) e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) -> ( ( x ( .s ` A ) y ) ( .r ` A ) z ) = ( ( x ( .s ` A ) y ) o. z ) ) |
55 |
53 13 54
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( x ( .s ` A ) y ) ( .r ` A ) z ) = ( ( x ( .s ` A ) y ) o. z ) ) |
56 |
12
|
adantr |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> A e. Ring ) |
57 |
3 43
|
ringcl |
|- ( ( A e. Ring /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) -> ( y ( .r ` A ) z ) e. ( M LMHom M ) ) |
58 |
56 20 13 57
|
syl3anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y ( .r ` A ) z ) e. ( M LMHom M ) ) |
59 |
1 21 3 2 22 14 23
|
mendvsca |
|- ( ( x e. ( Base ` S ) /\ ( y ( .r ` A ) z ) e. ( M LMHom M ) ) -> ( x ( .s ` A ) ( y ( .r ` A ) z ) ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) ( y ( .r ` A ) z ) ) ) |
60 |
19 58 59
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) ( y ( .r ` A ) z ) ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) ( y ( .r ` A ) z ) ) ) |
61 |
50 55 60
|
3eqtr4d |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( x ( .s ` A ) y ) ( .r ` A ) z ) = ( x ( .s ` A ) ( y ( .r ` A ) z ) ) ) |
62 |
|
simplr2 |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> y e. ( M LMHom M ) ) |
63 |
2 22 14 21 21
|
lmhmlin |
|- ( ( y e. ( M LMHom M ) /\ x e. ( Base ` S ) /\ ( z ` v ) e. ( Base ` M ) ) -> ( y ` ( x ( .s ` M ) ( z ` v ) ) ) = ( x ( .s ` M ) ( y ` ( z ` v ) ) ) ) |
64 |
62 39 17 63
|
syl3anc |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> ( y ` ( x ( .s ` M ) ( z ` v ) ) ) = ( x ( .s ` M ) ( y ` ( z ` v ) ) ) ) |
65 |
64
|
mpteq2dva |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( v e. ( Base ` M ) |-> ( y ` ( x ( .s ` M ) ( z ` v ) ) ) ) = ( v e. ( Base ` M ) |-> ( x ( .s ` M ) ( y ` ( z ` v ) ) ) ) ) |
66 |
|
simplll |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> M e. LMod ) |
67 |
14 2 21 22
|
lmodvscl |
|- ( ( M e. LMod /\ x e. ( Base ` S ) /\ ( z ` v ) e. ( Base ` M ) ) -> ( x ( .s ` M ) ( z ` v ) ) e. ( Base ` M ) ) |
68 |
66 39 17 67
|
syl3anc |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> ( x ( .s ` M ) ( z ` v ) ) e. ( Base ` M ) ) |
69 |
1 21 3 2 22 14 23
|
mendvsca |
|- ( ( x e. ( Base ` S ) /\ z e. ( M LMHom M ) ) -> ( x ( .s ` A ) z ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) z ) ) |
70 |
19 13 69
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) z ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) z ) ) |
71 |
|
fvexd |
|- ( ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) /\ v e. ( Base ` M ) ) -> ( z ` v ) e. _V ) |
72 |
26 39 71 42 18
|
offval2 |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) z ) = ( v e. ( Base ` M ) |-> ( x ( .s ` M ) ( z ` v ) ) ) ) |
73 |
70 72
|
eqtrd |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) z ) = ( v e. ( Base ` M ) |-> ( x ( .s ` M ) ( z ` v ) ) ) ) |
74 |
|
fveq2 |
|- ( w = ( x ( .s ` M ) ( z ` v ) ) -> ( y ` w ) = ( y ` ( x ( .s ` M ) ( z ` v ) ) ) ) |
75 |
68 73 33 74
|
fmptco |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y o. ( x ( .s ` A ) z ) ) = ( v e. ( Base ` M ) |-> ( y ` ( x ( .s ` M ) ( z ` v ) ) ) ) ) |
76 |
65 75 49
|
3eqtr4d |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y o. ( x ( .s ` A ) z ) ) = ( ( ( Base ` M ) X. { x } ) oF ( .s ` M ) ( y ( .r ` A ) z ) ) ) |
77 |
3 5 23 22
|
lmodvscl |
|- ( ( A e. LMod /\ x e. ( Base ` S ) /\ z e. ( M LMHom M ) ) -> ( x ( .s ` A ) z ) e. ( M LMHom M ) ) |
78 |
51 19 13 77
|
syl3anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( x ( .s ` A ) z ) e. ( M LMHom M ) ) |
79 |
1 3 43
|
mendmulr |
|- ( ( y e. ( M LMHom M ) /\ ( x ( .s ` A ) z ) e. ( M LMHom M ) ) -> ( y ( .r ` A ) ( x ( .s ` A ) z ) ) = ( y o. ( x ( .s ` A ) z ) ) ) |
80 |
20 78 79
|
syl2anc |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y ( .r ` A ) ( x ( .s ` A ) z ) ) = ( y o. ( x ( .s ` A ) z ) ) ) |
81 |
76 80 60
|
3eqtr4d |
|- ( ( ( M e. LMod /\ S e. CRing ) /\ ( x e. ( Base ` S ) /\ y e. ( M LMHom M ) /\ z e. ( M LMHom M ) ) ) -> ( y ( .r ` A ) ( x ( .s ` A ) z ) ) = ( x ( .s ` A ) ( y ( .r ` A ) z ) ) ) |
82 |
4 6 7 8 9 10 12 61 81
|
isassad |
|- ( ( M e. LMod /\ S e. CRing ) -> A e. AssAlg ) |