Metamath Proof Explorer


Theorem mendmulr

Description: A specific multiplication in the module endormoprhism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015)

Ref Expression
Hypotheses mendmulrfval.a
|- A = ( MEndo ` M )
mendmulrfval.b
|- B = ( Base ` A )
mendmulr.q
|- .x. = ( .r ` A )
Assertion mendmulr
|- ( ( X e. B /\ Y e. B ) -> ( X .x. Y ) = ( X o. Y ) )

Proof

Step Hyp Ref Expression
1 mendmulrfval.a
 |-  A = ( MEndo ` M )
2 mendmulrfval.b
 |-  B = ( Base ` A )
3 mendmulr.q
 |-  .x. = ( .r ` A )
4 coexg
 |-  ( ( X e. B /\ Y e. B ) -> ( X o. Y ) e. _V )
5 coeq1
 |-  ( x = X -> ( x o. y ) = ( X o. y ) )
6 coeq2
 |-  ( y = Y -> ( X o. y ) = ( X o. Y ) )
7 1 2 mendmulrfval
 |-  ( .r ` A ) = ( x e. B , y e. B |-> ( x o. y ) )
8 3 7 eqtri
 |-  .x. = ( x e. B , y e. B |-> ( x o. y ) )
9 5 6 8 ovmpog
 |-  ( ( X e. B /\ Y e. B /\ ( X o. Y ) e. _V ) -> ( X .x. Y ) = ( X o. Y ) )
10 4 9 mpd3an3
 |-  ( ( X e. B /\ Y e. B ) -> ( X .x. Y ) = ( X o. Y ) )