Step |
Hyp |
Ref |
Expression |
1 |
|
caofdi.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
caofdi.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐾 ) |
3 |
|
caofdi.3 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) |
4 |
|
caofdi.4 |
⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝑆 ) |
5 |
|
caofdi.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝑇 ( 𝑦 𝑅 𝑧 ) ) = ( ( 𝑥 𝑇 𝑦 ) 𝑂 ( 𝑥 𝑇 𝑧 ) ) ) |
6 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝑇 ( 𝑦 𝑅 𝑧 ) ) = ( ( 𝑥 𝑇 𝑦 ) 𝑂 ( 𝑥 𝑇 𝑧 ) ) ) |
7 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐾 ) |
8 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) |
9 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑤 ) ∈ 𝑆 ) |
10 |
6 7 8 9
|
caovdid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ) = ( ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) 𝑂 ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) |
11 |
10
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) 𝑂 ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
12 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ∈ V ) |
13 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
14 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ) |
15 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑤 ) ) ) |
16 |
1 8 9 14 15
|
offval2 |
⊢ ( 𝜑 → ( 𝐺 ∘f 𝑅 𝐻 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ) ) |
17 |
1 7 12 13 16
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑇 ( 𝐺 ∘f 𝑅 𝐻 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
18 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ∈ V ) |
19 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ∈ V ) |
20 |
1 7 8 13 14
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑇 𝐺 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) ) ) |
21 |
1 7 9 13 15
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑇 𝐻 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) |
22 |
1 18 19 20 21
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑇 𝐺 ) ∘f 𝑂 ( 𝐹 ∘f 𝑇 𝐻 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐺 ‘ 𝑤 ) ) 𝑂 ( ( 𝐹 ‘ 𝑤 ) 𝑇 ( 𝐻 ‘ 𝑤 ) ) ) ) ) |
23 |
11 17 22
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑇 ( 𝐺 ∘f 𝑅 𝐻 ) ) = ( ( 𝐹 ∘f 𝑇 𝐺 ) ∘f 𝑂 ( 𝐹 ∘f 𝑇 𝐻 ) ) ) |