| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caofdi.1 |
|- ( ph -> A e. V ) |
| 2 |
|
caofdi.2 |
|- ( ph -> F : A --> K ) |
| 3 |
|
caofdi.3 |
|- ( ph -> G : A --> S ) |
| 4 |
|
caofdi.4 |
|- ( ph -> H : A --> S ) |
| 5 |
|
caofdi.5 |
|- ( ( ph /\ ( x e. K /\ y e. S /\ z e. S ) ) -> ( x T ( y R z ) ) = ( ( x T y ) O ( x T z ) ) ) |
| 6 |
5
|
adantlr |
|- ( ( ( ph /\ w e. A ) /\ ( x e. K /\ y e. S /\ z e. S ) ) -> ( x T ( y R z ) ) = ( ( x T y ) O ( x T z ) ) ) |
| 7 |
2
|
ffvelcdmda |
|- ( ( ph /\ w e. A ) -> ( F ` w ) e. K ) |
| 8 |
3
|
ffvelcdmda |
|- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
| 9 |
4
|
ffvelcdmda |
|- ( ( ph /\ w e. A ) -> ( H ` w ) e. S ) |
| 10 |
6 7 8 9
|
caovdid |
|- ( ( ph /\ w e. A ) -> ( ( F ` w ) T ( ( G ` w ) R ( H ` w ) ) ) = ( ( ( F ` w ) T ( G ` w ) ) O ( ( F ` w ) T ( H ` w ) ) ) ) |
| 11 |
10
|
mpteq2dva |
|- ( ph -> ( w e. A |-> ( ( F ` w ) T ( ( G ` w ) R ( H ` w ) ) ) ) = ( w e. A |-> ( ( ( F ` w ) T ( G ` w ) ) O ( ( F ` w ) T ( H ` w ) ) ) ) ) |
| 12 |
|
ovexd |
|- ( ( ph /\ w e. A ) -> ( ( G ` w ) R ( H ` w ) ) e. _V ) |
| 13 |
2
|
feqmptd |
|- ( ph -> F = ( w e. A |-> ( F ` w ) ) ) |
| 14 |
3
|
feqmptd |
|- ( ph -> G = ( w e. A |-> ( G ` w ) ) ) |
| 15 |
4
|
feqmptd |
|- ( ph -> H = ( w e. A |-> ( H ` w ) ) ) |
| 16 |
1 8 9 14 15
|
offval2 |
|- ( ph -> ( G oF R H ) = ( w e. A |-> ( ( G ` w ) R ( H ` w ) ) ) ) |
| 17 |
1 7 12 13 16
|
offval2 |
|- ( ph -> ( F oF T ( G oF R H ) ) = ( w e. A |-> ( ( F ` w ) T ( ( G ` w ) R ( H ` w ) ) ) ) ) |
| 18 |
|
ovexd |
|- ( ( ph /\ w e. A ) -> ( ( F ` w ) T ( G ` w ) ) e. _V ) |
| 19 |
|
ovexd |
|- ( ( ph /\ w e. A ) -> ( ( F ` w ) T ( H ` w ) ) e. _V ) |
| 20 |
1 7 8 13 14
|
offval2 |
|- ( ph -> ( F oF T G ) = ( w e. A |-> ( ( F ` w ) T ( G ` w ) ) ) ) |
| 21 |
1 7 9 13 15
|
offval2 |
|- ( ph -> ( F oF T H ) = ( w e. A |-> ( ( F ` w ) T ( H ` w ) ) ) ) |
| 22 |
1 18 19 20 21
|
offval2 |
|- ( ph -> ( ( F oF T G ) oF O ( F oF T H ) ) = ( w e. A |-> ( ( ( F ` w ) T ( G ` w ) ) O ( ( F ` w ) T ( H ` w ) ) ) ) ) |
| 23 |
11 17 22
|
3eqtr4d |
|- ( ph -> ( F oF T ( G oF R H ) ) = ( ( F oF T G ) oF O ( F oF T H ) ) ) |