| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mendmulrfval.a | ⊢ 𝐴  =  ( MEndo ‘ 𝑀 ) | 
						
							| 2 |  | mendmulrfval.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 | 1 | mendbas | ⊢ ( 𝑀  LMHom  𝑀 )  =  ( Base ‘ 𝐴 ) | 
						
							| 4 | 2 3 | eqtr4i | ⊢ 𝐵  =  ( 𝑀  LMHom  𝑀 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑀 ) 𝑦 ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Scalar ‘ 𝑀 )  =  ( Scalar ‘ 𝑀 ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ,  𝑦  ∈  𝐵  ↦  ( ( ( Base ‘ 𝑀 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  =  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ,  𝑦  ∈  𝐵  ↦  ( ( ( Base ‘ 𝑀 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 9 | 4 5 6 7 8 | mendval | ⊢ ( 𝑀  ∈  V  →  ( MEndo ‘ 𝑀 )  =  ( { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑀 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ,  𝑦  ∈  𝐵  ↦  ( ( ( Base ‘ 𝑀 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) | 
						
							| 10 | 1 9 | eqtrid | ⊢ ( 𝑀  ∈  V  →  𝐴  =  ( { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑀 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ,  𝑦  ∈  𝐵  ↦  ( ( ( Base ‘ 𝑀 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑀  ∈  V  →  ( .r ‘ 𝐴 )  =  ( .r ‘ ( { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑀 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ,  𝑦  ∈  𝐵  ↦  ( ( ( Base ‘ 𝑀 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) ) | 
						
							| 12 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 13 | 12 12 | mpoex | ⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) )  ∈  V | 
						
							| 14 |  | eqid | ⊢ ( { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑀 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ,  𝑦  ∈  𝐵  ↦  ( ( ( Base ‘ 𝑀 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑀 ) 𝑦 ) ) 〉 } )  =  ( { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑀 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ,  𝑦  ∈  𝐵  ↦  ( ( ( Base ‘ 𝑀 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑀 ) 𝑦 ) ) 〉 } ) | 
						
							| 15 | 14 | algmulr | ⊢ ( ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) )  ∈  V  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) )  =  ( .r ‘ ( { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑀 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ,  𝑦  ∈  𝐵  ↦  ( ( ( Base ‘ 𝑀 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) ) | 
						
							| 16 | 13 15 | mp1i | ⊢ ( 𝑀  ∈  V  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) )  =  ( .r ‘ ( { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑀 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑀 ) ) ,  𝑦  ∈  𝐵  ↦  ( ( ( Base ‘ 𝑀 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) ) | 
						
							| 17 | 11 16 | eqtr4d | ⊢ ( 𝑀  ∈  V  →  ( .r ‘ 𝐴 )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) ) ) | 
						
							| 18 |  | fvprc | ⊢ ( ¬  𝑀  ∈  V  →  ( MEndo ‘ 𝑀 )  =  ∅ ) | 
						
							| 19 | 1 18 | eqtrid | ⊢ ( ¬  𝑀  ∈  V  →  𝐴  =  ∅ ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( ¬  𝑀  ∈  V  →  ( .r ‘ 𝐴 )  =  ( .r ‘ ∅ ) ) | 
						
							| 21 |  | mulridx | ⊢ .r  =  Slot  ( .r ‘ ndx ) | 
						
							| 22 | 21 | str0 | ⊢ ∅  =  ( .r ‘ ∅ ) | 
						
							| 23 | 20 22 | eqtr4di | ⊢ ( ¬  𝑀  ∈  V  →  ( .r ‘ 𝐴 )  =  ∅ ) | 
						
							| 24 | 19 | fveq2d | ⊢ ( ¬  𝑀  ∈  V  →  ( Base ‘ 𝐴 )  =  ( Base ‘ ∅ ) ) | 
						
							| 25 | 2 24 | eqtrid | ⊢ ( ¬  𝑀  ∈  V  →  𝐵  =  ( Base ‘ ∅ ) ) | 
						
							| 26 |  | base0 | ⊢ ∅  =  ( Base ‘ ∅ ) | 
						
							| 27 | 25 26 | eqtr4di | ⊢ ( ¬  𝑀  ∈  V  →  𝐵  =  ∅ ) | 
						
							| 28 | 27 | olcd | ⊢ ( ¬  𝑀  ∈  V  →  ( 𝐵  =  ∅  ∨  𝐵  =  ∅ ) ) | 
						
							| 29 |  | 0mpo0 | ⊢ ( ( 𝐵  =  ∅  ∨  𝐵  =  ∅ )  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) )  =  ∅ ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ¬  𝑀  ∈  V  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) )  =  ∅ ) | 
						
							| 31 | 23 30 | eqtr4d | ⊢ ( ¬  𝑀  ∈  V  →  ( .r ‘ 𝐴 )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) ) ) | 
						
							| 32 | 17 31 | pm2.61i | ⊢ ( .r ‘ 𝐴 )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  ∘  𝑦 ) ) |