Step |
Hyp |
Ref |
Expression |
1 |
|
mendmulrfval.a |
⊢ 𝐴 = ( MEndo ‘ 𝑀 ) |
2 |
|
mendmulrfval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
1
|
mendbas |
⊢ ( 𝑀 LMHom 𝑀 ) = ( Base ‘ 𝐴 ) |
4 |
2 3
|
eqtr4i |
⊢ 𝐵 = ( 𝑀 LMHom 𝑀 ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) |
7 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
8 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ 𝐵 ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ 𝐵 ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) |
9 |
4 5 6 7 8
|
mendval |
⊢ ( 𝑀 ∈ V → ( MEndo ‘ 𝑀 ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ 𝐵 ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) |
10 |
1 9
|
syl5eq |
⊢ ( 𝑀 ∈ V → 𝐴 = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ 𝐵 ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑀 ∈ V → ( .r ‘ 𝐴 ) = ( .r ‘ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ 𝐵 ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) ) |
12 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
13 |
12 12
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) ∈ V |
14 |
|
eqid |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ 𝐵 ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ 𝐵 ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) 〉 } ) |
15 |
14
|
algmulr |
⊢ ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) ∈ V → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) = ( .r ‘ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ 𝐵 ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) ) |
16 |
13 15
|
mp1i |
⊢ ( 𝑀 ∈ V → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) = ( .r ‘ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘f ( +g ‘ 𝑀 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑀 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) , 𝑦 ∈ 𝐵 ↦ ( ( ( Base ‘ 𝑀 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) 〉 } ) ) ) |
17 |
11 16
|
eqtr4d |
⊢ ( 𝑀 ∈ V → ( .r ‘ 𝐴 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) ) |
18 |
|
fvprc |
⊢ ( ¬ 𝑀 ∈ V → ( MEndo ‘ 𝑀 ) = ∅ ) |
19 |
1 18
|
syl5eq |
⊢ ( ¬ 𝑀 ∈ V → 𝐴 = ∅ ) |
20 |
19
|
fveq2d |
⊢ ( ¬ 𝑀 ∈ V → ( .r ‘ 𝐴 ) = ( .r ‘ ∅ ) ) |
21 |
|
mulrid |
⊢ .r = Slot ( .r ‘ ndx ) |
22 |
21
|
str0 |
⊢ ∅ = ( .r ‘ ∅ ) |
23 |
20 22
|
eqtr4di |
⊢ ( ¬ 𝑀 ∈ V → ( .r ‘ 𝐴 ) = ∅ ) |
24 |
19
|
fveq2d |
⊢ ( ¬ 𝑀 ∈ V → ( Base ‘ 𝐴 ) = ( Base ‘ ∅ ) ) |
25 |
2 24
|
syl5eq |
⊢ ( ¬ 𝑀 ∈ V → 𝐵 = ( Base ‘ ∅ ) ) |
26 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
27 |
25 26
|
eqtr4di |
⊢ ( ¬ 𝑀 ∈ V → 𝐵 = ∅ ) |
28 |
27
|
olcd |
⊢ ( ¬ 𝑀 ∈ V → ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) ) |
29 |
|
0mpo0 |
⊢ ( ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) = ∅ ) |
30 |
28 29
|
syl |
⊢ ( ¬ 𝑀 ∈ V → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) = ∅ ) |
31 |
23 30
|
eqtr4d |
⊢ ( ¬ 𝑀 ∈ V → ( .r ‘ 𝐴 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) ) |
32 |
17 31
|
pm2.61i |
⊢ ( .r ‘ 𝐴 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ∘ 𝑦 ) ) |