Description: A specific addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mendplusgfval.a | |- A = ( MEndo ` M ) |
|
mendplusgfval.b | |- B = ( Base ` A ) |
||
mendplusgfval.p | |- .+ = ( +g ` M ) |
||
mendplusg.q | |- .+b = ( +g ` A ) |
||
Assertion | mendplusg | |- ( ( X e. B /\ Y e. B ) -> ( X .+b Y ) = ( X oF .+ Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mendplusgfval.a | |- A = ( MEndo ` M ) |
|
2 | mendplusgfval.b | |- B = ( Base ` A ) |
|
3 | mendplusgfval.p | |- .+ = ( +g ` M ) |
|
4 | mendplusg.q | |- .+b = ( +g ` A ) |
|
5 | oveq12 | |- ( ( x = X /\ y = Y ) -> ( x oF .+ y ) = ( X oF .+ Y ) ) |
|
6 | 1 2 3 | mendplusgfval | |- ( +g ` A ) = ( x e. B , y e. B |-> ( x oF .+ y ) ) |
7 | 4 6 | eqtri | |- .+b = ( x e. B , y e. B |-> ( x oF .+ y ) ) |
8 | ovex | |- ( X oF .+ Y ) e. _V |
|
9 | 5 7 8 | ovmpoa | |- ( ( X e. B /\ Y e. B ) -> ( X .+b Y ) = ( X oF .+ Y ) ) |