Metamath Proof Explorer


Theorem mendplusg

Description: A specific addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015)

Ref Expression
Hypotheses mendplusgfval.a
|- A = ( MEndo ` M )
mendplusgfval.b
|- B = ( Base ` A )
mendplusgfval.p
|- .+ = ( +g ` M )
mendplusg.q
|- .+b = ( +g ` A )
Assertion mendplusg
|- ( ( X e. B /\ Y e. B ) -> ( X .+b Y ) = ( X oF .+ Y ) )

Proof

Step Hyp Ref Expression
1 mendplusgfval.a
 |-  A = ( MEndo ` M )
2 mendplusgfval.b
 |-  B = ( Base ` A )
3 mendplusgfval.p
 |-  .+ = ( +g ` M )
4 mendplusg.q
 |-  .+b = ( +g ` A )
5 oveq12
 |-  ( ( x = X /\ y = Y ) -> ( x oF .+ y ) = ( X oF .+ Y ) )
6 1 2 3 mendplusgfval
 |-  ( +g ` A ) = ( x e. B , y e. B |-> ( x oF .+ y ) )
7 4 6 eqtri
 |-  .+b = ( x e. B , y e. B |-> ( x oF .+ y ) )
8 ovex
 |-  ( X oF .+ Y ) e. _V
9 5 7 8 ovmpoa
 |-  ( ( X e. B /\ Y e. B ) -> ( X .+b Y ) = ( X oF .+ Y ) )