Metamath Proof Explorer


Theorem algaddg

Description: The additive operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis algpart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
Assertion algaddg + ˙ V + ˙ = + A

Proof

Step Hyp Ref Expression
1 algpart.a A = Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
2 1 algstr A Struct 1 6
3 plusgid + 𝑔 = Slot + ndx
4 snsstp2 + ndx + ˙ Base ndx B + ndx + ˙ ndx × ˙
5 ssun1 Base ndx B + ndx + ˙ ndx × ˙ Base ndx B + ndx + ˙ ndx × ˙ Scalar ndx S ndx · ˙
6 5 1 sseqtrri Base ndx B + ndx + ˙ ndx × ˙ A
7 4 6 sstri + ndx + ˙ A
8 2 3 7 strfv + ˙ V + ˙ = + A