Metamath Proof Explorer


Theorem algaddg

Description: The additive operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis algpart.a 𝐴 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
Assertion algaddg ( +𝑉+ = ( +g𝐴 ) )

Proof

Step Hyp Ref Expression
1 algpart.a 𝐴 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
2 1 algstr 𝐴 Struct ⟨ 1 , 6 ⟩
3 plusgid +g = Slot ( +g ‘ ndx )
4 snsstp2 { ⟨ ( +g ‘ ndx ) , + ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ }
5 ssun1 { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ } )
6 5 1 sseqtrri { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , × ⟩ } ⊆ 𝐴
7 4 6 sstri { ⟨ ( +g ‘ ndx ) , + ⟩ } ⊆ 𝐴
8 2 3 7 strfv ( +𝑉+ = ( +g𝐴 ) )