Description: If a statement holds for all sets, there is not a unique set for which the statement holds. (Contributed by Alexander van der Vekens, 28-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | alneu | |- ( A. x ph -> -. E! x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eunex | |- ( E! x ph -> E. x -. ph ) |
|
2 | exnal | |- ( E. x -. ph <-> -. A. x ph ) |
|
3 | 1 2 | sylib | |- ( E! x ph -> -. A. x ph ) |
4 | 3 | con2i | |- ( A. x ph -> -. E! x ph ) |