Metamath Proof Explorer


Theorem alneu

Description: If a statement holds for all sets, there is not a unique set for which the statement holds. (Contributed by Alexander van der Vekens, 28-Nov-2017)

Ref Expression
Assertion alneu
|- ( A. x ph -> -. E! x ph )

Proof

Step Hyp Ref Expression
1 eunex
 |-  ( E! x ph -> E. x -. ph )
2 exnal
 |-  ( E. x -. ph <-> -. A. x ph )
3 1 2 sylib
 |-  ( E! x ph -> -. A. x ph )
4 3 con2i
 |-  ( A. x ph -> -. E! x ph )