Metamath Proof Explorer


Theorem alneu

Description: If a statement holds for all sets, there is not a unique set for which the statement holds. (Contributed by Alexander van der Vekens, 28-Nov-2017)

Ref Expression
Assertion alneu ( ∀ 𝑥 𝜑 → ¬ ∃! 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 eunex ( ∃! 𝑥 𝜑 → ∃ 𝑥 ¬ 𝜑 )
2 exnal ( ∃ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑥 𝜑 )
3 1 2 sylib ( ∃! 𝑥 𝜑 → ¬ ∀ 𝑥 𝜑 )
4 3 con2i ( ∀ 𝑥 𝜑 → ¬ ∃! 𝑥 𝜑 )