Metamath Proof Explorer


Theorem eu2ndop1stv

Description: If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017)

Ref Expression
Assertion eu2ndop1stv ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 euex ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉 → ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉 )
2 nfeu1 𝑦 ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉
3 nfcv 𝑦 𝐴
4 3 nfel1 𝑦 𝐴 ∈ V
5 2 4 nfim 𝑦 ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉𝐴 ∈ V )
6 opprc1 ( ¬ 𝐴 ∈ V → ⟨ 𝐴 , 𝑦 ⟩ = ∅ )
7 6 eleq1d ( ¬ 𝐴 ∈ V → ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝑉 ↔ ∅ ∈ 𝑉 ) )
8 ax-5 ( ∅ ∈ 𝑉 → ∀ 𝑦 ∅ ∈ 𝑉 )
9 alneu ( ∀ 𝑦 ∅ ∈ 𝑉 → ¬ ∃! 𝑦 ∅ ∈ 𝑉 )
10 8 9 syl ( ∅ ∈ 𝑉 → ¬ ∃! 𝑦 ∅ ∈ 𝑉 )
11 7 10 syl6bi ( ¬ 𝐴 ∈ V → ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝑉 → ¬ ∃! 𝑦 ∅ ∈ 𝑉 ) )
12 11 impcom ( ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V ) → ¬ ∃! 𝑦 ∅ ∈ 𝑉 )
13 7 eubidv ( ¬ 𝐴 ∈ V → ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉 ↔ ∃! 𝑦 ∅ ∈ 𝑉 ) )
14 13 notbid ( ¬ 𝐴 ∈ V → ( ¬ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉 ↔ ¬ ∃! 𝑦 ∅ ∈ 𝑉 ) )
15 14 adantl ( ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V ) → ( ¬ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉 ↔ ¬ ∃! 𝑦 ∅ ∈ 𝑉 ) )
16 12 15 mpbird ( ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V ) → ¬ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉 )
17 16 ex ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝑉 → ( ¬ 𝐴 ∈ V → ¬ ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉 ) )
18 17 con4d ( ⟨ 𝐴 , 𝑦 ⟩ ∈ 𝑉 → ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉𝐴 ∈ V ) )
19 5 18 exlimi ( ∃ 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉 → ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉𝐴 ∈ V ) )
20 1 19 mpcom ( ∃! 𝑦𝐴 , 𝑦 ⟩ ∈ 𝑉𝐴 ∈ V )