Metamath Proof Explorer


Theorem eu2ndop1stv

Description: If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017)

Ref Expression
Assertion eu2ndop1stv ∃!yAyVAV

Proof

Step Hyp Ref Expression
1 euex ∃!yAyVyAyV
2 nfeu1 y∃!yAyV
3 nfcv _yA
4 3 nfel1 yAV
5 2 4 nfim y∃!yAyVAV
6 opprc1 ¬AVAy=
7 6 eleq1d ¬AVAyVV
8 ax-5 VyV
9 alneu yV¬∃!yV
10 8 9 syl V¬∃!yV
11 7 10 syl6bi ¬AVAyV¬∃!yV
12 11 impcom AyV¬AV¬∃!yV
13 7 eubidv ¬AV∃!yAyV∃!yV
14 13 notbid ¬AV¬∃!yAyV¬∃!yV
15 14 adantl AyV¬AV¬∃!yAyV¬∃!yV
16 12 15 mpbird AyV¬AV¬∃!yAyV
17 16 ex AyV¬AV¬∃!yAyV
18 17 con4d AyV∃!yAyVAV
19 5 18 exlimi yAyV∃!yAyVAV
20 1 19 mpcom ∃!yAyVAV