Description: If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | eu2ndop1stv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex | |
|
2 | nfeu1 | |
|
3 | nfcv | |
|
4 | 3 | nfel1 | |
5 | 2 4 | nfim | |
6 | opprc1 | |
|
7 | 6 | eleq1d | |
8 | ax-5 | |
|
9 | alneu | |
|
10 | 8 9 | syl | |
11 | 7 10 | syl6bi | |
12 | 11 | impcom | |
13 | 7 | eubidv | |
14 | 13 | notbid | |
15 | 14 | adantl | |
16 | 12 15 | mpbird | |
17 | 16 | ex | |
18 | 17 | con4d | |
19 | 5 18 | exlimi | |
20 | 1 19 | mpcom | |