Metamath Proof Explorer


Theorem alsc1d

Description: Deduction rule: Given "all some" applied to a class, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018)

Ref Expression
Hypothesis alsc1d.1
|- ( ph -> A! x e. A ps )
Assertion alsc1d
|- ( ph -> A. x e. A ps )

Proof

Step Hyp Ref Expression
1 alsc1d.1
 |-  ( ph -> A! x e. A ps )
2 df-alsc
 |-  ( A! x e. A ps <-> ( A. x e. A ps /\ E. x x e. A ) )
3 1 2 sylib
 |-  ( ph -> ( A. x e. A ps /\ E. x x e. A ) )
4 3 simpld
 |-  ( ph -> A. x e. A ps )