Metamath Proof Explorer
Description: Deduction rule: Given "all some" applied to a class, you can extract
the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018)
|
|
Ref |
Expression |
|
Hypothesis |
alsc1d.1 |
⊢ ( 𝜑 → ∀! 𝑥 ∈ 𝐴 𝜓 ) |
|
Assertion |
alsc1d |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
alsc1d.1 |
⊢ ( 𝜑 → ∀! 𝑥 ∈ 𝐴 𝜓 ) |
2 |
|
df-alsc |
⊢ ( ∀! 𝑥 ∈ 𝐴 𝜓 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ) ) |
3 |
1 2
|
sylib |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ) ) |
4 |
3
|
simpld |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |