Metamath Proof Explorer
		
		
		
		Description:  Deduction rule:  Given "all some" applied to a class, you can extract
       the "for all" part.  (Contributed by David A. Wheeler, 20-Oct-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | alsc1d.1 | ⊢ ( 𝜑  →  ∀! 𝑥  ∈  𝐴 𝜓 ) | 
				
					|  | Assertion | alsc1d | ⊢  ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alsc1d.1 | ⊢ ( 𝜑  →  ∀! 𝑥  ∈  𝐴 𝜓 ) | 
						
							| 2 |  | df-alsc | ⊢ ( ∀! 𝑥  ∈  𝐴 𝜓  ↔  ( ∀ 𝑥  ∈  𝐴 𝜓  ∧  ∃ 𝑥 𝑥  ∈  𝐴 ) ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐴 𝜓  ∧  ∃ 𝑥 𝑥  ∈  𝐴 ) ) | 
						
							| 4 | 3 | simpld | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝜓 ) |