Metamath Proof Explorer


Theorem alsc2d

Description: Deduction rule: Given "all some" applied to a class, you can extract the "there exists" part. (Contributed by David A. Wheeler, 20-Oct-2018)

Ref Expression
Hypothesis alsc2d.1 ( 𝜑 → ∀! 𝑥𝐴 𝜓 )
Assertion alsc2d ( 𝜑 → ∃ 𝑥 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 alsc2d.1 ( 𝜑 → ∀! 𝑥𝐴 𝜓 )
2 df-alsc ( ∀! 𝑥𝐴 𝜓 ↔ ( ∀ 𝑥𝐴 𝜓 ∧ ∃ 𝑥 𝑥𝐴 ) )
3 1 2 sylib ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ∧ ∃ 𝑥 𝑥𝐴 ) )
4 3 simprd ( 𝜑 → ∃ 𝑥 𝑥𝐴 )