Metamath Proof Explorer


Definition df-alsc

Description: Define "all some" applied to a class, which means ph is true for all x in A and there is at least one x in A . (Contributed by David A. Wheeler, 20-Oct-2018)

Ref Expression
Assertion df-alsc ( ∀! 𝑥𝐴 𝜑 ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∃ 𝑥 𝑥𝐴 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 cA 𝐴
2 wph 𝜑
3 2 0 1 walsc ∀! 𝑥𝐴 𝜑
4 2 0 1 wral 𝑥𝐴 𝜑
5 0 cv 𝑥
6 5 1 wcel 𝑥𝐴
7 6 0 wex 𝑥 𝑥𝐴
8 4 7 wa ( ∀ 𝑥𝐴 𝜑 ∧ ∃ 𝑥 𝑥𝐴 )
9 3 8 wb ( ∀! 𝑥𝐴 𝜑 ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∃ 𝑥 𝑥𝐴 ) )