Metamath Proof Explorer


Theorem alsconv

Description: There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018)

Ref Expression
Assertion alsconv ( ∀! 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀! 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
2 1 anbi1i ( ( ∀ 𝑥𝐴 𝜑 ∧ ∃ 𝑥 𝑥𝐴 ) ↔ ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∃ 𝑥 𝑥𝐴 ) )
3 df-alsc ( ∀! 𝑥𝐴 𝜑 ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∃ 𝑥 𝑥𝐴 ) )
4 df-alsi ( ∀! 𝑥 ( 𝑥𝐴𝜑 ) ↔ ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∃ 𝑥 𝑥𝐴 ) )
5 2 3 4 3bitr4ri ( ∀! 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀! 𝑥𝐴 𝜑 )