Description: There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alsconv | ⊢ ( ∀! 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀! 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 2 | 1 | anbi1i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ) ) |
| 3 | df-alsc | ⊢ ( ∀! 𝑥 ∈ 𝐴 𝜑 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ) ) | |
| 4 | df-alsi | ⊢ ( ∀! 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ∃ 𝑥 𝑥 ∈ 𝐴 ) ) | |
| 5 | 2 3 4 | 3bitr4ri | ⊢ ( ∀! 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀! 𝑥 ∈ 𝐴 𝜑 ) |