Metamath Proof Explorer


Theorem alsconv

Description: There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018)

Ref Expression
Assertion alsconv ∀! x x A φ ∀! x A φ

Proof

Step Hyp Ref Expression
1 df-ral x A φ x x A φ
2 1 anbi1i x A φ x x A x x A φ x x A
3 df-alsc ∀! x A φ x A φ x x A
4 df-alsi ∀! x x A φ x x A φ x x A
5 2 3 4 3bitr4ri ∀! x x A φ ∀! x A φ