Metamath Proof Explorer


Theorem alsconv

Description: There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018)

Ref Expression
Assertion alsconv
|- ( A! x ( x e. A -> ph ) <-> A! x e. A ph )

Proof

Step Hyp Ref Expression
1 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
2 1 anbi1i
 |-  ( ( A. x e. A ph /\ E. x x e. A ) <-> ( A. x ( x e. A -> ph ) /\ E. x x e. A ) )
3 df-alsc
 |-  ( A! x e. A ph <-> ( A. x e. A ph /\ E. x x e. A ) )
4 df-alsi
 |-  ( A! x ( x e. A -> ph ) <-> ( A. x ( x e. A -> ph ) /\ E. x x e. A ) )
5 2 3 4 3bitr4ri
 |-  ( A! x ( x e. A -> ph ) <-> A! x e. A ph )