Description: There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | alsconv | |- ( A! x ( x e. A -> ph ) <-> A! x e. A ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
2 | 1 | anbi1i | |- ( ( A. x e. A ph /\ E. x x e. A ) <-> ( A. x ( x e. A -> ph ) /\ E. x x e. A ) ) |
3 | df-alsc | |- ( A! x e. A ph <-> ( A. x e. A ph /\ E. x x e. A ) ) |
|
4 | df-alsi | |- ( A! x ( x e. A -> ph ) <-> ( A. x ( x e. A -> ph ) /\ E. x x e. A ) ) |
|
5 | 2 3 4 | 3bitr4ri | |- ( A! x ( x e. A -> ph ) <-> A! x e. A ph ) |