Metamath Proof Explorer


Definition df-alsc

Description: Define "all some" applied to a class, which means ph is true for all x in A and there is at least one x in A . (Contributed by David A. Wheeler, 20-Oct-2018)

Ref Expression
Assertion df-alsc
|- ( A! x e. A ph <-> ( A. x e. A ph /\ E. x x e. A ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 cA
 |-  A
2 wph
 |-  ph
3 2 0 1 walsc
 |-  A! x e. A ph
4 2 0 1 wral
 |-  A. x e. A ph
5 0 cv
 |-  x
6 5 1 wcel
 |-  x e. A
7 6 0 wex
 |-  E. x x e. A
8 4 7 wa
 |-  ( A. x e. A ph /\ E. x x e. A )
9 3 8 wb
 |-  ( A! x e. A ph <-> ( A. x e. A ph /\ E. x x e. A ) )