Metamath Proof Explorer
		
		
		
		Description:  Deduction rule:  Given "all some" applied to a class, the class is not
       the empty set.  (Contributed by David A. Wheeler, 23-Oct-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | alscn0d.1 | ⊢ ( 𝜑  →  ∀! 𝑥  ∈  𝐴 𝜓 ) | 
				
					|  | Assertion | alscn0d | ⊢  ( 𝜑  →  𝐴  ≠  ∅ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alscn0d.1 | ⊢ ( 𝜑  →  ∀! 𝑥  ∈  𝐴 𝜓 ) | 
						
							| 2 | 1 | alsc2d | ⊢ ( 𝜑  →  ∃ 𝑥 𝑥  ∈  𝐴 ) | 
						
							| 3 |  | n0 | ⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝐴 ) | 
						
							| 4 | 2 3 | sylibr | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) |