Metamath Proof Explorer


Theorem alscn0d

Description: Deduction rule: Given "all some" applied to a class, the class is not the empty set. (Contributed by David A. Wheeler, 23-Oct-2018)

Ref Expression
Hypothesis alscn0d.1 ( 𝜑 → ∀! 𝑥𝐴 𝜓 )
Assertion alscn0d ( 𝜑𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 alscn0d.1 ( 𝜑 → ∀! 𝑥𝐴 𝜓 )
2 1 alsc2d ( 𝜑 → ∃ 𝑥 𝑥𝐴 )
3 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
4 2 3 sylibr ( 𝜑𝐴 ≠ ∅ )