Metamath Proof Explorer
Description: Deduction rule: Given "all some" applied to a class, the class is not
the empty set. (Contributed by David A. Wheeler, 23-Oct-2018)
|
|
Ref |
Expression |
|
Hypothesis |
alscn0d.1 |
⊢ ( 𝜑 → ∀! 𝑥 ∈ 𝐴 𝜓 ) |
|
Assertion |
alscn0d |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
alscn0d.1 |
⊢ ( 𝜑 → ∀! 𝑥 ∈ 𝐴 𝜓 ) |
2 |
1
|
alsc2d |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
3 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
4 |
2 3
|
sylibr |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |