Description: Deduction rule: Given "all some" applied to a class, the class is not the empty set. (Contributed by David A. Wheeler, 23-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | alscn0d.1 | |- ( ph -> A! x e. A ps ) | |
| Assertion | alscn0d | |- ( ph -> A =/= (/) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | alscn0d.1 | |- ( ph -> A! x e. A ps ) | |
| 2 | 1 | alsc2d | |- ( ph -> E. x x e. A ) | 
| 3 | n0 | |- ( A =/= (/) <-> E. x x e. A ) | |
| 4 | 2 3 | sylibr | |- ( ph -> A =/= (/) ) |