Description: Deduction rule: Given "all some" applied to a class, the class is not the empty set. (Contributed by David A. Wheeler, 23-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | alscn0d.1 | |- ( ph -> A! x e. A ps ) |
|
Assertion | alscn0d | |- ( ph -> A =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alscn0d.1 | |- ( ph -> A! x e. A ps ) |
|
2 | 1 | alsc2d | |- ( ph -> E. x x e. A ) |
3 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
4 | 2 3 | sylibr | |- ( ph -> A =/= (/) ) |