| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alimp-no-surprise |
⊢ ¬ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) |
| 2 |
|
df-alsi |
⊢ ( ∀! 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∃ 𝑥 𝜑 ) ) |
| 3 |
|
df-alsi |
⊢ ( ∀! 𝑥 ( 𝜑 → ¬ 𝜓 ) ↔ ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) ) |
| 4 |
2 3
|
anbi12i |
⊢ ( ( ∀! 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀! 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∃ 𝑥 𝜑 ) ∧ ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) ) ) |
| 5 |
|
anandi3r |
⊢ ( ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∃ 𝑥 𝜑 ) ∧ ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) ) ) |
| 6 |
|
3ancomb |
⊢ ( ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) ) |
| 7 |
4 5 6
|
3bitr2i |
⊢ ( ( ∀! 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀! 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) ) |
| 8 |
1 7
|
mtbir |
⊢ ¬ ( ∀! 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀! 𝑥 ( 𝜑 → ¬ 𝜓 ) ) |