Metamath Proof Explorer


Theorem alsi-no-surprise

Description: Demonstrate that there is never a "surprise" when using the allsome quantifier, that is, it is never possible for the consequent to be both always true and always false. This uses the definition of df-alsi ; the proof itself builds on alimp-no-surprise . For a contrast, see alimp-surprise . (Contributed by David A. Wheeler, 27-Oct-2018)

Ref Expression
Assertion alsi-no-surprise ¬ ( ∀! 𝑥 ( 𝜑𝜓 ) ∧ ∀! 𝑥 ( 𝜑 → ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 alimp-no-surprise ¬ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 )
2 df-alsi ( ∀! 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∃ 𝑥 𝜑 ) )
3 df-alsi ( ∀! 𝑥 ( 𝜑 → ¬ 𝜓 ) ↔ ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) )
4 2 3 anbi12i ( ( ∀! 𝑥 ( 𝜑𝜓 ) ∧ ∀! 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∃ 𝑥 𝜑 ) ∧ ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) ) )
5 anandi3r ( ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∃ 𝑥 𝜑 ) ∧ ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) ) )
6 3ancomb ( ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) )
7 4 5 6 3bitr2i ( ( ∀! 𝑥 ( 𝜑𝜓 ) ∧ ∀! 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) )
8 1 7 mtbir ¬ ( ∀! 𝑥 ( 𝜑𝜓 ) ∧ ∀! 𝑥 ( 𝜑 → ¬ 𝜓 ) )