Step |
Hyp |
Ref |
Expression |
1 |
|
pm4.82 |
⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ↔ ¬ 𝜑 ) |
2 |
1
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ↔ ∀ 𝑥 ¬ 𝜑 ) |
3 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) |
4 |
2 3
|
sylbb |
⊢ ( ∀ 𝑥 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) → ¬ ∃ 𝑥 𝜑 ) |
5 |
|
imnan |
⊢ ( ( ∀ 𝑥 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) → ¬ ∃ 𝑥 𝜑 ) ↔ ¬ ( ∀ 𝑥 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ∧ ∃ 𝑥 𝜑 ) ) |
6 |
4 5
|
mpbi |
⊢ ¬ ( ∀ 𝑥 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ∧ ∃ 𝑥 𝜑 ) |
7 |
|
19.26 |
⊢ ( ∀ 𝑥 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ) |
8 |
7
|
anbi2ci |
⊢ ( ( ∀ 𝑥 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ∧ ∃ 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜑 ∧ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ) ) |
9 |
|
3anass |
⊢ ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ) ) |
10 |
|
3anrot |
⊢ ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) ) |
11 |
8 9 10
|
3bitr2i |
⊢ ( ( ∀ 𝑥 ( ( 𝜑 → 𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ∧ ∃ 𝑥 𝜑 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) ) |
12 |
6 11
|
mtbi |
⊢ ¬ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) |