Metamath Proof Explorer


Theorem alimp-no-surprise

Description: There is no "surprise" in a for-all with implication if there exists a value where the antecedent is true. This is one way to prevent for-all with implication from allowing anything. For a contrast, see alimp-surprise . The allsome quantifier also counters this problem, see df-alsi . (Contributed by David A. Wheeler, 27-Oct-2018)

Ref Expression
Assertion alimp-no-surprise ¬ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 pm4.82 ( ( ( 𝜑𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ↔ ¬ 𝜑 )
2 1 albii ( ∀ 𝑥 ( ( 𝜑𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ↔ ∀ 𝑥 ¬ 𝜑 )
3 alnex ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 )
4 2 3 sylbb ( ∀ 𝑥 ( ( 𝜑𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) → ¬ ∃ 𝑥 𝜑 )
5 imnan ( ( ∀ 𝑥 ( ( 𝜑𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) → ¬ ∃ 𝑥 𝜑 ) ↔ ¬ ( ∀ 𝑥 ( ( 𝜑𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ∧ ∃ 𝑥 𝜑 ) )
6 4 5 mpbi ¬ ( ∀ 𝑥 ( ( 𝜑𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ∧ ∃ 𝑥 𝜑 )
7 19.26 ( ∀ 𝑥 ( ( 𝜑𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) )
8 7 anbi2ci ( ( ∀ 𝑥 ( ( 𝜑𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ∧ ∃ 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜑 ∧ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ) )
9 3anass ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ) )
10 3anrot ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ) ↔ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) )
11 8 9 10 3bitr2i ( ( ∀ 𝑥 ( ( 𝜑𝜓 ) ∧ ( 𝜑 → ¬ 𝜓 ) ) ∧ ∃ 𝑥 𝜑 ) ↔ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 ) )
12 6 11 mtbi ¬ ( ∀ 𝑥 ( 𝜑𝜓 ) ∧ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ∧ ∃ 𝑥 𝜑 )